
3AA - Assembler Interpreter

A Programming Introduction for Newbys

Prof. Dr. W. Kowalk

Fachbereich 10 Informatik, Carl-von-Ossietzky-Universität Oldenburg

Version 1.1 – August, 2002

This document describes programming of an interactive assembler interpreter 3AA – Three Address
Assembler: 3AA. All programs are presented explicitly, and can be copied into the interpreter.

Introduction
An assembler is used to describe instructions of a processor. This assembler is a 3 address assembler
which uses no registers. Thus quantities can be stored in memory only.

Its main application is to teach the behavior of a simple computer, which has been shown to be
equivalent to a Turing machine.

Lesson 1: The first example
The first program shows a simple computation and the display of results. It’s no “Hello World!”-Program.

Open the Interpreter by clicking its link. The screen appears. Insert the following text in the Edit Window
labeled “Input Program Code”:

1 // Arithmetic expression Result := 6*(4+5)
2 Start adr Aux1 := con 4 + con 5
3 adr Result := con 6 * val Aux1
4 stop
5 Result con 0
6 Aux1

This program computes the arithmetic expression, displayed in the first line.

The first line starts with a line number (which helps to understand the program, but has definitely no
meaning to the interpreter). Two slashes (//) start a comment, which is arbitrary text until the end of the
line. The text (including the “//”) has also no meaning to the interpreter. It only may help a human reader
(particular your tutor) to understand the program. The spaces between the line number and the comment
have also no meaning to the interpreter. One space is sometimes necessary to separate two words
(which are usually called “tokens”), but otherwise spaces have no meaning to the interpreter.

Line 2 starts with a line number (again: with no meaning to the interpreter) and a label. This label “Start”
gets automatically the number of the memory cell where the statement (or variable) in this line is stored.
Its absolute value should be of no concern to the programmer! (Never, never use absolute addresses in
your programs. Never!)

Line 2 holds a complete statement, which is here called an arithmetic expression, since a numerical
computation is performed. The first token “adr” tells the interpreter to use the following memory address
number (here “Aux1”) to store the result of the computation, which stands on the right hand side of the

assignment symbol “:=”. This memory address number “Aux1” is a constant which is defined in line 6
(look at the program!). Yes, you only write a Name on a line (besides an optional line number, which has
definitely no meaning!), and the memory cell is reserved for an integer variable, where this Name is now
a synonym for the address of that memory cell. This Name must be unique! But the compiler tells you, if
its not.

Following the assignment symbol “:=” stands an arithmetic expression. The token “con” tells the
interpreter that the following constant (it must be a constant!) is taken as a value. The expression “con
4” means the quantity four. That’s simple, isn’t? Congest what the next expression “con 5” means! If
your answer is five, it’s quite right. If it isn’t, think again! Well, and the plus sing “+” means: add those two
values. The first expression results to nine. And this result is stored at the memory cell labeled “Aux1”.
That’s all you have to understand. That wasn’t difficult, was it?

The next line with the line number 3 shows almost the same: An arithmetic expression, where the result is
now stored at the memory cell labeled “Result”. There is only one new concept. The second operand of
the operator (which is now “*” or times) has the token “val”. This token tells the interpreter to take the
following constant (it must be a constant, this time a compiler constant) as a memory address; the
quantity that is to be taken to compute with is now the value stored at the memory cell (here the memory
cell labeled “Aux1”). You remember, we have just stored a value there, namely nine. Now we retrieve it
to use it in another computation. That is practical, isn’t it? You can compute something, store it by a well
defined label, and get it back whenever you want. That is the concept of data mining (in a very simple
environment, of course ?). Well the interpreter computes now six times nine (the value stored at the
memory cell “Aux1”) and the result is stored at the memory cell labeled “Result”.

The next line with the line number 4 has only one statement, which is called “stop”. Well, it does what it
tells you. It stops execution of the program. That’s all. Nothing more to be said about.

You might have guessed, but I will tell you here: A program is executed one statement after the other. It
starts (if you don’t tell it something else) in the first executable line, which is here line 2, and proceeds to
the next line (you can tell the program to do others, but you have to do it explicitly). That is all you have
to understand in this first lesson. That’s not too difficult!

But of course you are interested to see how the program is executed, won’t you? Well, the edit field
called “Compiler Constant Memory Values” is used for this task. Again, it is as simple as it can be.
You can write into this area whatever you want. However, if you write the name of a memory label
(“Aux1” or “Result” in our example program), the interpreter appends the contents of the corresponding
memory cells to these names. Write therefore those two names into that area. Do it now, don’t hesitate.
The “Compiler Constant Memory Values” edit field should now look like

Result
Aux1

It is a wise decision to store your program now before going further. This is done by searching for a valid
directory and give your program a name, that ends with “.asm”, e.g. “Arithmetic1.asm”. Then press
the buttons “save program” and “save” in the Compiler Constant Memory Values area. By pressing the
corresponding open buttons, you can retrieve these texts whenever you want.

Now, the next step is to compile the program. “Compile” is used as a technical term, which analyses a
program and generates an intermediate code. Do it now, press the button “Compile”. If you’ve done what
I told you, compiling should end with a congratulation. This means, that no syntactical errors are found
(don’t worry about the notion “syntactical”. It is a terminus technicus, you will understand better later).
There can still be logical errors in your program, for example multiple definitions of constants (i.e. the
same name with different values). This type of logical errors can your compiler find, and it will do in the
next phase. That is simple for it. However, if you make logical errors in your program, your compiler
cannot find them. Thus, if no syntactical errors are found, this does not mean that your program is

“correct”. It only means, the compiler has done its very best and looked for any possible type of error it
can detect. If it didn’t detect any, the rest is up to you.

If you did not mistype anything, the compiler will end up with no further comment. Then you can load your
program. This means to load the statements as well as other memory content, like predefined values, into
the memory. Do “Load” before each execution. Don’t forget it, wont you! 3AA asks you now where to
start, and it also makes a good suggestion, which you should accept (i.e. click “Yes”). You always must
start on an executable memory cell.

Now you can run the program. Don’t be shy. Press the “Run” button. It won’t hurt you. What do you see?
Well, if you have observed that the display of the Memory constants shows something, you have good
eyes. It should now look like:

 Result=54
 Aux1=9

If you didn’t know before what six times nine yields, here you got it. It seems to work, doesn’t it? All’s well,
that end’s well!

This ends your first lesson. You have learned how to input a program, save and open the programtext,
compile, load and run the program, and display the results.

Lesson 2: Compiler Constants
Compiler Constants aren’t that difficult. You have learned almost everything you must know about them.
They are names. A name is a sequence of characters, starting with a letter (like ‘A’, ‘D’, ‘X’) and followed
by another letter or cipher. Thus “Start” is a correct name, as well as “Aux1” or “Label1234”. But
“1Ende” is no correct name, since it doesn’t start with a letter. Of course, there must not be any other
character within this sequence, particular no space. A name is what you might have expected, so don’t
worry about it.

A compiler constant is a name that has a value, which is a number like 0, 1, 122 or 8888. Instead of an
integer number you always can write a compiler constant. That is more useful, since a well named
compiler constant tells the reader what it means. The value of a compiler constant defined like this

Label … // something to be stored into a memory cell

is always equal to the memory cell, which is defined on the same line. (remember, the text from “//” to
the end of the line has no meaning to the interpreter. This text is called a comment). This can be a cell to
remember a value (like a number) or it can be a statement. To define a memory cell for a number you
can write something like this:

Label0 // defines a memory cell with initial value 0
Label1 con 256 // defines a memory cell with initial value 256

Thus you might guess how to define a memory cell with initial value thirty-three and a compiler constant
named “Price1” the value of which is the number of that memory cell. It should look like

Price1 con 33 // defines a memory cell with initial value 33
Tax con 13 // defines a memory cell with initial value ??

What will be the initial value of the memory cell at “Tax”. If you guessed thirteen you are quite right, if
you didn’t, restart this lesson from the very first line. Sometimes it is confusing, but what we are defining
here are two things. In the last example “Tax” is the address of a memory cell. The initial value at this
address is thirteen. These are two completely different and independent things. Please, don’t muddle up.
Type the following program, compile, load, and run it,

1 // Compiler Constants
2 stop
3
4 Label0

5 Label1 con 0
6 Price con 33
7 Tax con 13

and you will get the result:

Label0=0
Label1=0
Price=33
Tax=13

It is a custom to call such a memory address a variable. Thus a variable is something that can have
variable values, where its name comes from. Using such a variable name, we can store and retrieve
values that are required for some computations. Thus, when we call something a variable we mean a
memory address. The value of a variable is the value at he memory place (and not the address). Try to
make this quite clear. It will become your daily bread.

Now, we come to the simpler part. Sometimes a constant is required, the value of which is not a memory
address. You can define them in 3AA as well. Write

1 // Compiler Constants 2
2
3 stop
4 Value1 := con 243
5 MagicNumber := con 42

compile, load, and run this program and you have all you want.

Value1=243
MagicNumber=42

That is much simpler, isn’t it? Now you have a compiler constant the value of which is explicitly defined.
It is no address; so don’t use it as an address. It will cause problems while executing the program.

If you are really interested in the values of a memory address you can display them as well. A program
that does so might look like:

1 // Compiler Constants
2 adr Output := con Price
3 stop
4 Label0
5 Label1 con 0
6 Price con 33
7 Tax con 13
8 Output

with the results:

Label0=0
Label1=0
Price=33
Tax=13

Output=4

But it is completely unnecessary to know the absolute value of any memory address. So forget it!

There are some things you should know to simplify editing. Your editor can indent and set line numbers
automatically. Test the button “Format”, and everything becomes clear.

To copy a text, select it by putting the cursor on the first symbol and draw it to the last one, by keeping
the left mouse button pressed. Then press <strg><C> to copy, <strg><X> to cut and <strg><V> to insert.
If you are used to usual editors, this should make no problems for you. Using the cursor keys, you can
move the cursor around, insert text or delete by use of backspace or delete keys.

Lesson 3: Going Further by Gotos
There is another type of statement that is important for any program, besides the simplest ones. Instead
of executing each statement one after the other you can select any other statement to be executed by
using a “goto”-statement. To make this clearer we give the following example:

 1 // Sum number from 1 to To
 2 Start adr Run := con 1
 3 adr Sum := con 0
 4 Loop if val Run > val To then goto con End
 5 adr Sum := val Sum + val Run
 6 adr Run := val Run + con 1
 7 goto con Loop
 8 End stop
 9 To con 5
10 Run con 0
11 Sum con 0

This program sums the numbers from one to To (which is here five, i.e. the variable To has the value
five.) In the first statement at line 2 the variable Run gets the value 1, in the next line the variable Sum
gets the value 0. We say, we initialize those variables by one and zero. Now comes a statement that
evaluates a condition. It says, if something is true then go to somewhere else and execute the statements
you find there. That is the concept of a goto: Change the regular execution sequence, if necessary. We
use a conditional goto and an unconditioned goto.

Let’s analyze our example. In line 4 you find a Label “Loop” and a conditional goto. First you have to
evaluate the condition, which depends on the values of the variables of Run and To. If the first variable
Run is larger than the second variable To, you end the program by going to the statement at line 8
(stop). Otherwise you perform the next statement at line 5, which adds to Sum the value of Run. This is
done by getting the values of the variables Sum and Run, add them, and store the result to the variable
Sum. It is important to see that the value of Sum is taken before it is changed. Anything else would be
curious. In a similar way Run is incremented by 1 in the next statement at line 6. Now we come to the
statement at line 7 which is an unconditional goto. It says to continue execution at line 4, where you find
the statement labeled Loop. That is all you have to understand. Label a statement with a compiler
constant like “Loop” and continue somewhere else execution of your program at that statement by use of
the statement “goto con Loop”.

Before you test this program, please save it. Do this always, since one of the worst problems is to end a
program that executes infinitely, since there are loops that never ends. A loop consists of some
statements that are repeated over and over again. And if you have forgotten to insert a conditional goto
into that loop, it will never stop. It depends on your operating system how to stop this process, but in most
cases almost everything will be lost, you have programmed – unless you have saved it before. Thus, use
the save buttons as often as possible. It is so simple to do this, and it will help you to save time, money,
and avoid frustration.

Now test the program. It should display the result

1+...+To=5 is Sum=15!

We told you already, that you can write anything into the Compiler Constant Memory Values area. So we
wrote

1+...+To is Sum!

to get the result from above. Try it, and you will find it very helpful to document your results in the output
area as easily as shown here.

Sometimes it is a good idea to follow program execution step by step. That helps to understand what your
program is doing, so don’t be shy to use the “Step” button. This will execute the first statement, refresh

the output and wait until you enter “Yes” for the next step, “No” to execute the program until its natural
end, or “Cancel” to cancel program execution. Study the display. It tells you accurately what has
happened in the last step. This is really a useful feature!

How can you run the program until some point and then start stepwise execution? Insert the statement
“step” and the program will start Step-Modus whenever it executes this statement.

The statistics button opens a display that shows you the counts of the last execution, which are also
cumulated. Use it if you need to know the number of statements your program has executed.

This ends lesson 3. You have learned how to use conditional and unconditional gotos and that the worst
thing in computer programming is an infinite loops.

Lesson 4: Compute a quantity’s place
You can do very much with the programming system you have learned so far. But there is some concept
still missing that is important. This will be presented now.

We start by stating a problem. Instead of adding computed results, like those in the last lesson, we might
be interested in adding a list of variables. How can we do that, if we know only the address of the first
element in the list? Let us consider a program that solves this problem.

 1 // Sum numbers from First to Last
 2
 3 adr Run := con First
 4 adr Sum := con 0
 5 Loop if val Run > con Last then goto con End
 6 adr Sum := val Sum + val val Run
 7 adr Run := val Run + con 1
 8 goto con Loop
 9 End stop
10 Run con 0
11 Sum con 0
12 First con 123
13 con 234
14 con 345
15 Last con 456

It’s almost the same program as the one before. The first two statements initialize Run and Sum. Run is
now initialized by the address of the first value to be added, which stands at line 12. Thus the value of the
variable Run is now an address! This shouldn’t confuse you, since addresses are integer numbers,
nothing else, and we can calculate with them as we can with any other integer. In line 5 the conditional
statement tests, whether the address Run points to, is larger than the address of the last quantity to be
summed, which stands at line 15. You should now understand while Run is prefixed by val, while Last
is prefixed by con. Both values results to addresses (otherwise, this comparisons would be of no sense),
but Run is an address variable, Last is an address constant. To get the value of a variable you need the
prefix val, and to get the value of a constant, you need the prefix con.

The loop encloses the add-statement, which is now something quite new. The second operand of the add-
expression at line 6 is prefixed by val twice. What’s that? Well, Run holds a value that is an address.
Writing val Run would result into the address, which however is not the value to be added, but the
quantity found at this address is to be summed. Thus we have to inform the interpreter that we need the
value found at an address, which is found at memory location Run. Run holds the address of a value, not
the value itself. Thus, Run is to be “dereferenced” twice to get the value at the corresponding address
location. It is complicated, I agree, but it is a fundamental concept you need in many places: Compute
the address where you find an object. In most cases it is not so easy as we have assumed until now to
find the location of a quantity. The concept of “indirect addressing”, as this technique is called, is
fundamental in programming.

In the next statement at line 7 we make some computation with addresses! We compute the next address
by adding 1 to Run. That’s okay. You can do so. Please, consider that you do not need to know the
absolute value of the addresses. You only have to compute a relative value, namely the next, and it is
not important to know whether your list of quantities starts at line 11, 100 or 333.

This method solves the problem. But it’s only the first half of the story. Now comes the second one, which
is not much more difficult (to be honest, it’s as difficult as the first half). Sometimes we want to store a
result at an address. Let us store some numbers (always the same) into the memory. To give a simple
example, look at the following program:

 1 // Store squares from First to Last
 2
 3 adr Run := con First
 5 Loop if val Run > con Last then goto con End
 6 adr adr Run := con 2
 7 adr Run := val Run + con 1
 8 goto con Loop
 9 End stop
10 Run con 0
12 First con 123
13 Valu1 con 234
14 Valu2 con 345
15 Last con 456

It is similar to the previous one, besides that now at line 6 the constant 2 is stored into a memory cell.
The address of this memory cell is given by the Variable Run. And that is the whole story. To store
something at an address that is given by the variable Run we have to write “adr adr Run := …”. The
meaning of this expression is: Write the value at the address found at Run. Again, this variable’s value is
an address. (By the way, you can also write “adr val Run := …”, which is completely equivalent.)

Since this is not quite easy to understand, we give another example, although every thing has been told
already. The next example copies all values from list First1 to list First2. We need two memory
variables, we call them Run1 and Run2, the rest is obvious.

 1 // Copy from First to Last
 2
 3 adr Run1 := con First1
 4 adr Run2 := con First2
 5 Loop if val Run1 > con Last1 then goto con End
 6 adr adr Run2 := val val Run1
 7 adr Run1 := val Run1 + con 1
 8 adr Run2 := val Run2 + con 1
 9 goto con Loop
10 End stop
11 Run1
12 Run2
13 First1 con 123
14 Valu11 con 234
15 Valu12 con 345
16 Last1 con 456
17 First2 con 1
18 Valu21 con 2
19 Valu22 con 3
20 Last2 con 4

The result is

11 Run1=14
12 Run2=18
13 First1=123
14 Valu11=234
15 Valu12=345
16 Last1=456

17 First2=123
18 Valu21=234
19 Valu22=345
20 Last2=456

as you might have expected. It is important to understand this program, so study it carefully.

This ends lesson 4. You have learned the important concept of indirect addressing. Now you can
compute the location of a quantity and access the value you find at the computed address.

Lesson 5: Plot a figure
This lesson is the most funniest one. It shows you how to plot a figure. Yes, you can draw a picture with
3AA. Did you expect this?

Well, the concept is simple, although cumbersome. At first, you have to define a plotter by defining a
variable called PLOTTER. This is a keyword. Don't use it for anything else. Do it in the following way:

1 // Plotter example
2 PLOTTER con 1

The next step is to assign something to this variable. Start simply by assigning two comma-expressions:

1 // Plotter example
2 PLOTTER con 1
3 adr PLOTTER := con 100, con 100
4 adr PLOTTER := con 200, con 200
5 stop

The output will be a line, drawn on an extra panel that has popped up, and connecting the pixel points
(100,100) with (200,200). A simple line, nothing else. In black, one point in size. Guess, you know how to
plot further lines, e.g. to points (300,100)! Do it. Your program should now look like:

1 // Plotter example
2 PLOTTER con 1
3 adr PLOTTER := con 100, con 100
4 adr PLOTTER := con 200, con 200
5 adr PLOTTER := con 300, con 100
6 stop

Now, assign a simple number to the PLOTTER. Use for example line 6 through 9 in the next example:

 1 // Plotter example
 2 PLOTTER con 1
 3 adr PLOTTER := con 100, con 100
 4 adr PLOTTER := con 200, con 200
 5 adr PLOTTER := con 300, con 100
 6 adr PLOTTER := con 50
 7 adr PLOTTER := con 400, con 200
 8 adr PLOTTER := con 111
 9 adr PLOTTER := con 500, con 100
10 stop

Did you see, what happend? Well, the output has changed. Using a number between 1 and 100, you can
select the thickness of your line. Its about one tenth of the number you assigned to PLOTTER. Of course,
0 means no output (i.e. the plotter's pencil is raised). But, if you have a number greater than 100, you
select a color. The following list gives you the correspondence between code number and color:

Code Color Code Color Code Color

101 black 106 green 111 red

102 blue 107 lightGray 112 yellow

103 cyan 108 magenta 113 white

Code Color Code Color Code Color

104 darkGray 109 orange >103 black

105 gray 110 pink

Everything clear? It is up to you to plot any picture that you like. Give me a nice one!

However, one thing should be mentioned before. Before you rerun your program, you should clear the
output. That is done by assigning the number -1 to the plotter. Also, if you rerun the program the plotter
uses the last size and color values, which are now 50 and red. So, don't forget to reinit your PLOTTER.
Use the following initial phase (line 3 to 5) for this!

 1 // Plotter example
 2 PLOTTER con 1
 3 adr PLOTTER := con -1
 4 adr PLOTTER := con 1
 5 adr PLOTTER := con 101
 6 adr PLOTTER := con 100, con 100
 7 adr PLOTTER := con 200, con 200
 8 adr PLOTTER := con 300, con 100
 9 adr PLOTTER := con 50
10 adr PLOTTER := con 400, con 200
11 adr PLOTTER := con 111
12 adr PLOTTER := con 500, con 100
13 stop

Well, that's the first part of the plotter story. Now comes the second one. You can plot text as well, one
symbol by the other. That's almost as simple as plotting a number. You need only to tell the PLOTTER
which letter to write, and where. We introduce a new operator, the $, and append to the last program:

13 adr PLOTTER := con -1 $ con 'H'
14 adr PLOTTER := con 100$ con 300
15 stop

Do it. There will appear a letter 'H' at an appropriate place. Now, its up to you to write the “Hello World!”
program! What's the color of this letter? It's red, isn't it. Well, you can plot a blue one by assigning the
code number 102 to the PLOTTER. And what's about the size. Assign another one, for example 24, to
get a smaller letter. Do it now!

14 ...
15 adr PLOTTER := con 24 // size is now 24 points
16 adr PLOTTER := con 102 // color is now blue
17 adr PLOTTER := con -1 $ con 'a'
18 adr PLOTTER := con 130$ con 300
19 stop

To send a character to the PLOTTER, you have to assign an dollar-expression, the first parameter of
which is negative. That looks cumbersome, however, it seems to be a simple method to assign the
parameters to the PLOTTER.

That' all about the plotter. You can test it, but you should always consider, that plotting is interesting
particularly if you compute the coordinates of the points. And then you can produce very nice pictures,
e.g.:

20 adr PLOTTER := con -1
21 adr PLOTTER := con 1
22 adr PLOTTER := con 101
23 Loop if val Zahler > con 50 then goto con End
24 adr PLOTTER := con 0
25 adr PLOTTER := val x1, val y1
26 adr PLOTTER := con 1
27 adr PLOTTER := val x2, val y2
28 adr y1 := val y1 - con 1
29 adr y2 := val y2 + con 10

30 adr Zahler := val Zahler + con 1
31 goto con Loop
32 End stop
33 x1 con 100
34 y1 con 550
35 x2 con 700
36 y2 con 50
37 Zahler con 0

