00001
00002
00003 #include <math.h>
00004
00005 #include "Vector3f.h"
00006
00007
00008 namespace pge {
00009
00010
00011
00012
00013
00014
00015
00016 Vector3f::Vector3f(void) {
00017 m_v[0] = 0.0f;
00018 m_v[1] = 0.0f;
00019 m_v[2] = 0.0f;
00020 }
00021
00022
00023
00024
00025
00026
00027
00028 Vector3f::Vector3f(float x, float y, float z) {
00029 m_v[0] = x;
00030 m_v[1] = y;
00031 m_v[2] = z;
00032 }
00033
00034
00035
00036
00037
00038
00039
00040 Vector3f::Vector3f(float v[3]) {
00041 m_v[0] = v[0];
00042 m_v[1] = v[1];
00043 m_v[2] = v[2];
00044 }
00045
00046
00047
00048
00049
00050
00051
00052 Vector3f::Vector3f(const Vector3f ©) {
00053 m_v[0] = copy.m_v[0];
00054 m_v[1] = copy.m_v[1];
00055 m_v[2] = copy.m_v[2];
00056 }
00057
00058
00059
00060
00061
00062
00063
00064 Vector3f::Vector3f(const Vector4f &vec) {
00065 m_v[0] = vec.m_v[0];
00066 m_v[1] = vec.m_v[1];
00067 m_v[2] = vec.m_v[2];
00068 }
00069
00070
00071
00072
00073
00074
00075
00076 Vector3f::~Vector3f(void) {
00077 }
00078
00079
00080
00081
00082
00083
00084
00085 Vector3f Vector3f::add(const Vector3f &v) {
00086 Vector3f res = Vector3f(m_v[0] + v.m_v[0], m_v[1] + v.m_v[1], m_v[2] + v.m_v[2]);
00087 return res;
00088 }
00089
00090
00091
00092
00093
00094
00095
00096 Vector3f Vector3f::add(float c) {
00097 Vector3f res = Vector3f(m_v[0] + c, m_v[1] + c, m_v[2] + c);
00098 return res;
00099 }
00100
00101
00102
00103
00104
00105
00106
00107 Vector3f Vector3f::subtract(const Vector3f &v) {
00108 Vector3f res = Vector3f(m_v[0] - v.m_v[0], m_v[1] - v.m_v[1], m_v[2] - v.m_v[2]);
00109 return res;
00110 }
00111
00112
00113
00114
00115
00116
00117
00118 Vector3f Vector3f::subtract(float c) {
00119 Vector3f res = Vector3f(m_v[0] - c, m_v[1] - c, m_v[2] - c);
00120 return res;
00121 }
00122
00123
00124
00125
00126
00127
00128
00129 Vector3f Vector3f::divide(const Vector3f &v) {
00130 Vector3f res = Vector3f(m_v[0] / v.m_v[0], m_v[1] / v.m_v[1], m_v[2] / v.m_v[2]);
00131 return res;
00132 }
00133
00134
00135
00136
00137
00138
00139
00140 Vector3f Vector3f::divide(float c) {
00141 Vector3f res = Vector3f(m_v[0] / c, m_v[1] / c, m_v[2] / c);
00142 return res;
00143 }
00144
00145
00146
00147
00148
00149
00150
00151 Vector3f Vector3f::multiply(const Vector3f &v) {
00152 Vector3f res = Vector3f(m_v[0] * v.m_v[0], m_v[1] * v.m_v[1], m_v[2] * v.m_v[2]);
00153 return res;
00154 }
00155
00156
00157
00158
00159
00160
00161
00162 Vector3f Vector3f::multiply(float c) {
00163 Vector3f res = Vector3f(m_v[0] * c, m_v[1] * c, m_v[2] * c);
00164 return res;
00165 }
00166
00167
00168
00169
00170
00171
00172
00173 float Vector3f::sqrMagnitude(void) {
00174 return ((m_v[0] * m_v[0]) + (m_v[1] * m_v[1]) + (m_v[2] * m_v[2]));
00175 }
00176
00177
00178
00179
00180
00181
00182
00183 float Vector3f::magnitude(void) {
00184 return ((float)sqrt((m_v[0] * m_v[0]) + (m_v[1] * m_v[1]) + (m_v[2] * m_v[2])));
00185 }
00186
00187
00188
00189
00190
00191
00192
00193 float Vector3f::dotProduct(const Vector3f &v) {
00194 return ((m_v[0] * v.m_v[0]) + (m_v[1] * v.m_v[1]) + (m_v[2] * v.m_v[2]));
00195 }
00196
00197
00198
00199
00200
00201
00202
00203 void Vector3f::normalize(void) {
00204
00205 float f = 1.0f / magnitude();
00206
00207
00208 m_v[0] = m_v[0] * f;
00209 m_v[1] = m_v[1] * f;
00210 m_v[2] = m_v[2] * f;
00211
00212 }
00213
00214
00215
00216
00217
00218
00219
00220 Vector3f Vector3f::crossProduct(const Vector3f &v) {
00221 Vector3f res = Vector3f((m_v[1] * v.m_v[2]) - (m_v[2] * v.m_v[1]), (m_v[2] * v.m_v[0]) - (m_v[0] * v.m_v[2]),
00222 (m_v[0] * v.m_v[1]) - (m_v[1] * v.m_v[0]));
00223 return res;
00224 }
00225
00226
00227
00228
00229
00230
00231
00232 float Vector3f::angle(Vector3f v) {
00233 return ((float)acos(dotProduct(v) / (magnitude() * v.magnitude())) / (float)PIOVER180);
00234 }
00235
00236
00237
00238
00239
00240
00241
00242 float Vector3f::sqrDistance(const Vector3f &v) {
00243 return ((m_v[0] - v.m_v[0]) * (m_v[0] - v.m_v[0])) +
00244 ((m_v[1] - v.m_v[1]) * (m_v[1] - v.m_v[1])) +
00245 ((m_v[2] - v.m_v[2]) * (m_v[2] - v.m_v[2]));
00246 }
00247
00248
00249
00250
00251
00252
00253
00254 float Vector3f::distance(const Vector3f &v) {
00255 return ((float)(sqrt(((m_v[0] - v.m_v[0]) * (m_v[0] - v.m_v[0])) +
00256 ((m_v[1] - v.m_v[1]) * (m_v[1] - v.m_v[1])) +
00257 ((m_v[2] - v.m_v[2]) * (m_v[2] - v.m_v[2]))
00258 )));
00259 }
00260
00261
00262
00263
00264
00265
00266
00267 bool Vector3f::isNullVector(void) {
00268 if (m_v[0] != 0.0f || m_v[1] != 0.0f || m_v[2] != 0.0f) {
00269 return false;
00270 }
00271 return true;
00272 }
00273
00274
00275
00276
00277
00278
00279
00280 bool Vector3f::equals(const Vector3f &v) {
00281 if(abs(m_v[0] - v.m_v[0]) <= EQUAL_TOLERANCE
00282 && abs(m_v[1] - v.m_v[1]) <= EQUAL_TOLERANCE
00283 && abs(m_v[2] - v.m_v[2]) <= EQUAL_TOLERANCE) {
00284 return true;
00285 } else {
00286 return false;
00287 }
00288 }
00289
00290
00291
00292
00293
00294
00295
00296 Vector3f Vector3f::closestPointOnLine(Vector3f lineStart, Vector3f lineEnd) {
00297 Vector3f c = this->subtract(lineStart);
00298 Vector3f V = lineEnd.subtract(lineStart);
00299
00300
00301 V.normalize();
00302 float d = lineStart.distance(lineEnd);
00303 float t = V.dotProduct(c);
00304
00305
00306 if(t < 0.0f) {
00307 return lineStart;
00308 }
00309 if(t > d){
00310 return lineEnd;
00311 }
00312
00313
00314 V = V.multiply(t);
00315
00316 return lineStart.add(V);
00317 }
00318
00319
00320
00321
00322
00323
00324
00325 Vector3f Vector3f::createNormal(Vector3f a, Vector3f b, Vector3f c) {
00326 Vector3f u;
00327 Vector3f v;
00328 Vector3f normal;
00329
00330
00331 u = b.subtract(a);
00332 v = c.subtract(a);
00333
00334 normal = u.crossProduct(v);
00335 normal.normalize();
00336 return normal;
00337 }
00338
00339
00340
00341
00342
00343
00344
00345 std::string Vector3f::toString(void) {
00346
00347 return std::string("TODO");
00348 }
00349 };