
Quicker than Quicksort
- A very fast sorting algorithm -

Prof. Dr. W. P. Kowalk
kowalk@informatik.uni-oldenburg.de

Unversity Oldenburg, Ammerländer Heerstraße 114-118
D-26111 Oldenburg, Germany

Abstract
We describe a fast sorting algorithm and its properties compared to other sorting algorithms. We
also compare implementations in different languages, C and Java, and explain, why the results are
substantial distinct.

Introduction
Sorting is a classical task in computer science, although today the most standard algorithms seem to
have a sufficient performance. However, from a theoretical point of view one might ask, whether
there are better sorting algorithms than the existing ones and how improvements can be gained. We
will show such an algorithm and consider its properties as well as the reasons for its behavior in this
paper.

Basics of the algorithm
The main idea for this sorting algorithm is the following: we distribute the elements into subsets and
proceed recursively. To find adequate subsets, we raise a statistic of the data (which we call a
distribution) and sort them into corresponding parts of always the same array.

Our assumptions are the followings, given formally in Java:

1. We sort arrays of data sets, where there is an integer key:
class DataSet {...; int key;}
DataSet Field[];

2. We require some auxiliar arrays to determine the ranges of the subsets.
int FromInd[]; // Number or index of elements in array
int ToInd[]; // Index of elements in array

3. We assume that there is a function that can map the key into a subrange. In the implementation
below we compute the minimum (Min) and maximum (Max) key and estimate their difference as
the range. Depending on the number of subranges (Ranges) we compute a range index by the
formula
double factor = ((double)(Ranges-1.0))/(Max-Min);
int rangeIndex = factor * key;

From these assumptions the algorithm is canonical. Let N be the number of elements to be sorted.
The algorithm starts by finding the smallest and biggest key (O(N)), then it computes the Faktor

(O(1)), and now it counts the number of elements that belong to each subrange k (O(N)) on
FromInd[k+1]. In the next step the first indices of the corresponding subranges in the total array are
computed (O(Ranges)) and the bounds of the corresponding subranges are copied to another array
(O(Ranges)).

The sorting process consists of putting the element found in the current subrange at
FromInd[index] into its corresponding subrange, the element at that place in that subrange into its
corresponding subrange, etc, until finally an element is to be put in the current subrange; then the
algorithm increments FromInd[index] and proceeds until this subrange is exhausted; all elements
of this subrange are then in this subrange, which is sorted recursively. Then the next subrange is

handled in the same way. Complexity on this level is of course O(N), since each element is touched
once.

Adding complexities we get: 3×O(N)+2×O(Ranges)+O(1). Thus complexity on each level of
recursion is O(N), while the number of levels is logRanges(N). Since Ranges is usually very large, this
logarithm yields a very small factor.

The algorithm
The next program shows the executable algorithm in Java.
void DistributionSort(DataSet [] Field, int from, int to) {
int FromInd[] = new int[Ranges+1]; // Array for characters, including 0 for empty character
int ToInd[] = new int[Ranges+1]; // set counters to 0
int Min = Field[from].key; // Minimum key
int Max = Field[from].key; // Maximum key
for(int Ind=from;Ind<=to;Ind++) { // find min and max key
int key = Field[Ind].key;
Min = Math.min(Min,key);
Max = Math.max(Max,key);

}
if(Max<=Min) return; // Min, Max are least and biggest key
double factor = ((double)(Ranges-1.0))/(Max-Min); // key*factor is index range
for(int Ind=0;Ind<=Ranges;Ind++) FromInd[Ind]=0; // set counters to zero
int Index=0;
for(Index=from;Index<=to;Index++) // FromInd[i] holds number of elements in range {i-1}
FromInd[1+(int)((Field[Index].key - Min) * factor)] += 1;

FromInd[0] = from;
for(int Ind=1;Ind<=Ranges;Ind++) // FromInd[i] holds index of subrange i
FromInd[Ind] += FromInd[Ind-1];

System.arraycopy(FromInd,0,ToInd,0,Ranges+1); // ToInd == FromInd
for(int Bereich=0;Bereich<Ranges;Bereich++) { // for all subranges
int First = FromInd[Bereich]; // First Index of current subrange
int Last = ToInd[Bereich+1]-1; // Last Index of current subrange
for(int Ind=First;Ind<=Last;Ind++) { // Exchange elements from this subrange to Dest.
int To = (int)((Field[Ind].key-Min)*factor); // comp. dest. of element in Field[Ind]
while(To != Bereich) { // Until Dest. == current subrange
DataSet Pointer = Field[FromInd[To]]; // Shift element to Destination
Field[FromInd[To]] = Field[Ind]; // ..
Field[Ind] = Pointer; // ..
FromInd[To]++; // Increment Destination Index
To = (int)((Field[Ind].key-Min)*factor); // comp. dest. of element in Field[Ind]

} } // All elementa are sorted into the current subrange
First = ToInd[Bereich]; // First is index of current subrange
if(First<Last) { // if there is more than one element
if(Last-First < DirektSortAnzahl) // if number of elements is very small
selection(Field,First,Last); // use direct sorting algorithm

else // else
DistributionSort(Field,First,Last); // Sort this subrange with DistributionSort

} } }

Analysis
The algorithm has been tested carefully so that we will assume that it works correctly. However, the
performance is of particular interest.

A first question is the optimum selection of the free parameters of our algorithm. There are two: The
number of subranges and the number of elements that are to be sorted directly. The latter we will set
to 20, although there are some reasons to increase this slightly, with however little influence on the
sorting time.

The number of subranges has much more influence on the performance. The following figure shows
this. We measured the sorting time for different number of elements to be sorted and different
number of subranges. All times measured in this paper were derived from averaging sorting time of
ten or more randomly generated fields with the corresponding number of elements. The programs
run on a DELL Latitude C800 with 1 GHz. All programs were developed with JBuilder 7.

The results show, that there is a maximum execution time, and that there are several relativ
minimums. The least minimums are at a range from about 200 subranges for 200,000 elements to
about 700 subranges for 2,000,000 elements. An approximative formula for this can be like:

number subranges≈0.5⋅ number of elements .

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

Selection of number of subranges

Distr-200
Distr-400
Distr-600
Distr-800
Distr-1000
Distr-1200
Distr-1400
Distr-1600
Distr-1800
Distr-2000

Number of elements to be sorted in 100,000

So
rti

ng
 ti

m
e

in
 m

s

The square root is taken here since this seems to be adequate for the problem. If all subranges are
equally distributed over the field (or the distribution of elements ist completely linear), then we get
exactly two levels of recursion. E.g. in case of 1 Million elements we have about 2000 elements in
each subrange of the first level and 4 elements in the second subrange, which is then sorted directly.
From this we see that the number of elements which are to be sorted directly can vary very much
without any influence on the speed of the algorithm.

This following table shows the number of subranges depending on the number of elements to be
sorted.

Elements 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000
Subranges 223,61 316,23 387,3 447,21 500 547,72 591,61 632,46 670,82 707,11

With this number of subranges one gets a suboptimal execution time with our new algorithm,
Distribution Sort.

Now we compare Distribution Sort's execution time with other algorithms. We have implemented
Quicksort and Arraysort, where the latter is the standard sorting algorithm of Java, which uses the
interface Comparator to compute the order of the elements. The following diagram shows
execution time against number of elements; for each array length we have sampled ten randomly
generated fields and averaged the measured execution times.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

8

Comparisons of different sorting algorithms

Distributionsort
Quicksort
Arraysort

Number of elements to be sorted in 100,000

Ex
ec

ut
io

n
tim

e
in

 s
ec

on
ds

The first question is how good is our algorithm compared to Quicksort. The main surprise is that the
algorithm is about twice as quick as Quicksort, when programmed in Java. We also implemented
this algorithm in C and found an increase of speed of about 5%. That is much less. What's the
reason for this?

Analysis of Quicksort (which has been done somewhere else carefully) shows that the main reason
for Quicksort's performance compared to e.g. Heapsort lies in the checks of array bounds.
Quicksort compares only keys, but never array bounds, while e.g. Heapsort seems to check array
bounds more often than keys. However, in Java, each array access also checks against array bounds,
so that Quicksort is impeded when implemented in Java. But any way, our algorithm shows to be
faster in both, C like languages with no array bound check as well as Java.

The diagram also shows that the Arraysort algorithm of Java is less fast. The reason is that they
implemented Mergesort, since this is a stable algorithm, which neither Quicksort nor Distribution
Sort is. However, Mergesort is usually less fast.

Other key types
Our algorithm works very fine with integer key types. For other key types, e.g. text, their may be
some problems.

Well, text is not really critical in this algorithm, since we can use a simple method, namely compare
first, second, third etc. letters of the words. Here, even the index arrays can be chosen fixed, since it
seems to be appropriate to use for each letter its own subrange. Even better, one can take a mapping,
which maps all characters into a number, where different characters that are ordered identically can
be mapped to the same number, e.g. lower case and upper case letters or special letters (German Ä,ä
as A,a, French é,ê as e etc.). Also, no minimum and maximum count is required.

The following algorithm concentrates on the principles, where a function getInt maps the n-th
character to a number from 1 to CharNr; 0 is chosen for the empty character.
void Distribute1(int from, int to, int index) {
int FromInd[] = new int[CharNr+2]; // Array for characters, including 0 for empty character
for(int i=0;i<=CharNr+1;i++) FromInd[i]=0; // set counters to 0
int count=0;
for(int i = from;i<=to;i++) {
if(Field[i].length>=index) count++; // count elements with String length >= index
FromInd[Field[i].getInt(index)+1]++; // count destination subrange of this text

}
if(count==0) return; // only empty strings, thus no sorting required
FromInd[0] = from; // Init pointer to first index of array
for(int i=1;i<=CharNr+1;i++) FromInd[i] += FromInd[i-1]; // Make Distribution
int ToInd[] = new int[CharNr+2]; // New Field for Indices
System.arraycopy(FromInd,0,ToInd,0,CharNr+2); // Init this Field
for(int subrange=0;subrange<CharNr+1;subrange++) { // for all subrange
int Start = FromInd[subrange]; // First Index of this subrange
int Last = ToInd[subrange+1]-1; // Last Index of this subrange
for(int Ind=Start;Ind<=Last;Ind++) { // Exchange all elements into its subrange
int To = (int)((Field[Ind].getInt(index))); // To is index of Destination subrange
while(To != subrange) { // while Dest. subrange != subrange
int ToIndex = FromInd[To]; // ToIndex point to Dest. index
DataSet Pointer = Field[ToIndex]; // aux. pointer of element
Field[ToIndex] = Field[Ind]; // copy element to destination
Field[Ind] = Pointer; // copy dest. element
FromInd[To]++; // Increment index of dest. subrange
To = (int)((Field[Ind].getInt(index))); // To is index of Destination subrange

} }
// All elements are in the current subrange
Start = ToInd[subrange];
if(Start<Last) { // if not yet completely sorted
if(Last-Start < DirectSortCount) { // Sort direct, if too less elements
Select(Start,Last);

} else {
Distribute1(Start,Last,index+1); // Sort this subrange with DistributionSort

} } } }

In the first loop the algorithm counts the number of key texts the length of which is not bigger than
index. If there is none the procedure is finished, since no sorting is required. This is critical for
correct termination of the program.

Performance measurement showed that this program is more than twice as fast as Quicksort, if
implemented in Java. We used randomly generated texts with random lengths between 1 and 50
symbols, with 90 different symbols. The length of the arrays differed from 25,000 to 500,000, where

again for each array length ten samples have been averaged.

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
0

1

2

3

4

Sorting of Texts with different sorting algorithms

Distributionsort
Quicksort
Arraysort

Number of elements to be sorted

So
rti

ng
 ti

m
e

in
 s

ec
on

ds

Conclusion
Our algorithm is twice as good as Quicksort, although this depends on the implementation language.
It can be used for sorting of records with text keys or numerical keys.

An important result of the analysis shows that Java seems to impede Quicksort since Quicksort's
functionality does not require array bounds checks, while Java tests each array access against
bounds. Thus the conclusion of this observation is that the speed of any algorithm depends critically
on the programming language it is implemented in.

