Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Foliensatz, 14.11.05
Wintersemester 2005/2006

- Algorithmen
 - Rechnen (compute)
 - Änderung der Werte von Attributen eines Modells
 - in mehreren Schritten
 - Anweisungen (statement)
 - einzelne Schritte zur Änderung der Werte
 - i.d.R. von maschineller Vorrichtung ausgeführt
 - Berechnung besteht aus mehreren solcher Anweisungen
 - in bestimmter Reihenfolge auszuführen
 - Algorithmus (algorithm)
 - Festlegung einer solchen Reihenfolge von Anweisungen
 - bestimmte Wirkung auf Werte der Attribute eines Modells

- Algorithmus
 - zentrale Begriff in der Informatik
 - Algorithmen können nicht alle Probleme lösen
 - Grenzen des Machbaren
 - Berechenbarkeit
 - mathematische Modelle
 - Beschreiben Anweisungen/Folgen solcher Anweisungen
 - Turingmaschine
 - sehr einfaches, aber dennoch universelles Berechnungsmodell

- Algorithmus und Berechenbarkeit
 - Algorithmus
 - gibt an, wie Problem gelöst werden kann
 - Berechenbarkeit
 - welche Probleme können überhaupt algorithmisch gelöst werden?

- Algorithmus
 - Maschinen zum Rechnen
 - genaue Festlegung der jeweiligen elementaren Rechenschritte
 - Anweisungen werden nacheinander ausgeführt
 - Fortgang der Berechnung hängt von Zwischenergebnissen ab
 - eigentliche Information liegt als Datum vor
 - Zahlen- oder Zeichenwerte (Zustand)
 - Bedeutung der Daten ist Maschine nicht bekannt
 - Algorithmus kennt (implizit) Bedeutung der Attribute
 - bestimmt abhängig von Zustand weitere Folge von Rechenschritten
 - Algorithmus
 - macht aus "dummer" Rechenmaschine "intelligent" erscheinendes Gerät
 - bringt, salopp formuliert, Geist in die Maschine

- Algorithmen
 - Berechnungen
 - nach bestimmten Regeln oder Vorschriften
 - in mehreren elementaren Rechenschritten
 - als Algorithmus (*algorithm*) bezeichnet
 - genauerer Definition des Begriffs Algorithmus
 - welche Probleme sollen mit Algorithmen gelöst werden?
 - Eingabedaten in Ausgabedaten umwandeln
 - Daten liegen allgemein in Form von Zeichenketten vor
 - auch als mathematische Funktion beschreibbar
 - Algorithmen auch als Abbildungsvorschriften auffassbar
 - gegenüber realen Verhältnissen vereinfachte Auffassung
 - zunächst übernehmen

- Algorithmen
 - Beispiele
 - Multiplikation (27·33) ist Abbildung der Zeichenfolgen '2','7' und '3','3' in die Zeichenfolge '8','9','1'.
 - Ein Übersetzer übersetzt die Zeichenfolge ,H', 'U', 'N', 'D' in die Zeichenfolge 'D', 'O', 'G'.

- Algorithmen
 - Beispiele

```
XXXX
X
XXX
XXX
X
```

Algorithmen

- Alphabet
 - jede (geordnete) Menge von Zeichen
 - nicht nur Buchstaben des lateinischen Alphabets: 'A', 'B',...
 - auch z.B.
 - Ziffern: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 - Sonderzeichen: '+', '-', '\$', '°', '±', '(', '}'.
 - auch ohne Hochkommata geschrieben, wenn einzelne Zeichen eindeutig
 - Ziffern = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9,\},\$
 - Sonderzeichen = $\{+, -, \$, °, \pm, (, ')\}$.
 - Zeichenfolge in doppelte Hochkommata
 - "27", "33" Þ "891"
 - "HUND" → "DOG"
 - "XXXX--X--X--XXXX-" → "3".

Rechnen

- Abbildung zwischen Zeichenfolgen
 - klassisches Rechnen Manipulieren von Zeichenfolgen
 - jede Manipulation von Zeichenfolgen heißt Rechnen
 - Rechnen sehr viel allgemeinere Bedeutung als üblich
- einfach durch Tabelle realisierbar
 - jedem Eingabewert ein Ausgabewert zugeordnet
 - nur f
 ür endlich viele F
 älle m
 öglich

$$\begin{array}{ccc} D_1 & \rightarrow & W_1 \\ D_2 & \rightarrow & W_2 \end{array}$$

$$D_N \rightarrow W_N$$

Nicht f
ür unbeschr
änkt/sehr viele Eingabewerte

- Rechnen
 - Beispiel
 - Tabelle der Produkte aller Zahlen zwischen eins und hundert
 - leicht zu erstellen
 - Wie viele Einträge hätte diese Tabelle?
 - Tabelle der Produkte aller Zahlen zwischen eins und einer Million
 - nicht ebenso erstellt werden?
 - 2 Milliarden Werte (32 Bits)
 - jedes mögliche Produkt verschiedener Zahlen jemals berechnet?
 - Fakultäten

```
1! \rightarrow 1
```

$$2! \rightarrow 2$$

$$3! \rightarrow 6$$

$$4! \rightarrow 24$$

...

 $20! \rightarrow 2432902008176640000$

• Fibonacci-Zahlen?

- Algorithmus heißt
 - abstrakt
 - im Prinzip unbeschränkte Klasse von Problemen
 - statische Finitheit
 - endliche Beschreibung jedes Algorithmus
 - Programm (program)
 - Formulierung eines Algorithmus f
 ür spezielle Rechenmaschine
 - dynamische Finitheit
 - während Ablauf nur endliche Menge an Werten (Resourcen)
 - terminieren
 - Algorithmus endet nach endlicher Anzahl von Schritten
 - nicht terminierende Algorithmen
 - Betriebssyteme
 - Maschinensteuerungen
 - Teilaufgaben

- Algorithmus heißt
 - determiniert oder funktional
 - bei gleichen Eingabedaten stets gleiche Ergebnisse
 - wird von meisten Algorithmen verlangt
 - entspricht den Vorgaben (Spezifikation)
 - Produkt zweier Zahlen liefert genau einen Wert, auf genau eine Weise dargestellt
 - zufällig oder randomisiert
 - unterschiedliche Ergebnisse
 - Ergebnis eine von mehreren richtigen Lösungen
 - Algorithmus findet zufällig eine Lösung und präsentiert diese
 - Suche Bruder von Claus: Albert oder Berthold
 - Finde eine Quadratwurzel aus 4: +2 oder -2
 - Dreieck aus drei Seiten im Längenverhältnis (2,3,4):

Zufallszahlengenerator

- Algorithmus heißt
 - deterministisch, eindeutig
 - im gleichen Zustand immer auf gleiche Weise fortgesetzt
 - liefert natürlich stets die gleichen Ergebnisse → stets determiniert
 - Indeterministisch
 - bei gleichen Datenwerten verschiedene Nachfolgeschritte
 - Auswahl der Schritte
 - zufällig
 - alle möglichen Fortsetzungen des Algorithmus gleichzeitig parallel ausgeführt
 - teilweise f
 ür theoretische Untersuchungen ben
 ötigt
 - in der Praxis heute keine große Rolle

- zwei Algorithmen heißen
 - äquivalent
 - bei jeweils gleichen Eingaben stets gleiche Ergebnisse
 - Frage nach besserem/bestem Algorithmus
 - Bewertung von Algorithmen
 - Algorithmus heißt besser, wenn er
 - schneller
 - Rechnung in kürzerer Zeit erledigt
 - kürzer
 - weniger Speicherplatz f
 ür Darstellung des Algorithmus
 - weniger Speicherplatz während der Ausführungszeit
 - meist nicht allgemein berechenbar
 - andere quantifizierbare Bedingungen
 - genauer
 - stabil (Sortierverfahren)
 - Komplexität eines Algorithmus

- Berechenbarkeit
 - von großer theoretischer Bedeutung, was man berechnen kann
 - Probleme, f
 ür die es i.allg. keine L
 ösung gibt
 - praktische Bedeutung
 - nicht berechenbares Problem gar nicht erst mit algorithmischen Methoden angehen
 - Berechnungsverfahren entwickeln für möglichst viele Probleme
 - Grenze, was überhaupt noch zu berechnen ist

- Berechenbarkeit
 - These von Church
 - praktisch nur ein Berechenbarkeitsbegriff
 - alle bisher entwickelten Berechnungsverfahren lösen gleiche Problemklasse
 - es gibt Probleme, die von keinem Algorithmus berechnet werden können
 - alle lösbaren Probleme können mit herkömmlichen Berechnungsverfahren gelöst werden
 - es gibt Probleme, die auch mit den größten Computern nicht behandelt werden können
 - Klasse von Problemen unbekannt, ob berechenbar
 - gewisse Problemklassen nur für sehr kleine Werte lösbar (mit sehr wenigen Parametern/sehr kleinen numerischen Werten)

- Berechenbarkeit
 - konkreter Berechenbarkeitsbegriff
 - bestimmtes Maschinenmodell
 - Turingmaschine
 - sämtliche berechenbare Probleme Turing-berechenbar
 - anderes Maschinenmodell löst gleiche Problemklasse
 - Maschinenmodell löst sämtliche Turing-berechenbaren Probleme
 - Annahmen
 - bestimmte Ressourcen nicht beschränkt
 - Speicher f
 ür Daten und Programme
 - Zeit

- Bemerkungen zur Berechenbarkeit
 - Andere Verfahren zur Berechnung von Problemen
 - Gödel
 - Regeln zur Konstruktion komplexerer Funktionen aus einfacheren
 - Unvollständigkeitstheorem (1931)
 - (Hilberts Entscheidungsproblem)
 - kein Algorithmus, der für jede Aussage über die natürlichen Zahlen entscheidet, ob diese wahr oder falsch ist.
 - Church
 - funktionales System, Lambda-Kalkül
 - Postsche Ersetzungssystem
 - Turingmaschinen mit mehreren Bändern
 - Alle Verfahren 'äquivalent'
 - Beweis durch 'Emulation' einer Maschine auf anderer

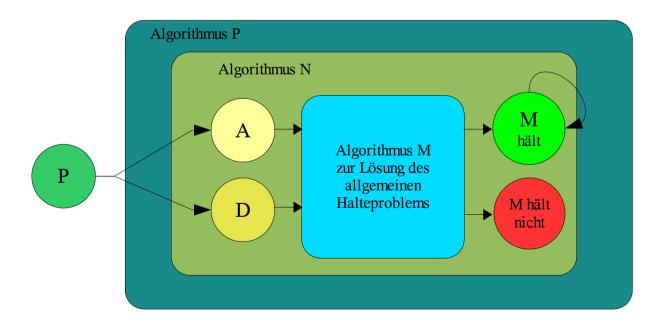
- Turing-berechenbar
 - Problem heißt Turing-berechenbar, wenn es einen Algorithmus gibt, der eine vorgegebene Zeichenkette in genau eine andere Zeichenkette umwandelt, welche von der vorgegebenen abhängt
 - "123+456" → "579"
 - schrittweise Umwandlung
 - für jeden Schritt eigene Berechenbarkeit definiert
 - Turing-berechenbarer Algorithmus
 - hält nach endlich vielen Schritten an
 - liefert ein richtiges Ergebnis

- Turing-berechenbar
 - gibt es Algorithmus, der sämtliche Probleme löst?
 - für spezielles Problem kann es keinen Algorithmus geben, der dieses Problem für alle Eingaben lösen kann.
 - Selbstanwendung
 - kann Algorithmus sich selbst analysieren
 - Halteproblem
 - Turingmaschine, die zu jeder vorgegebenen Turingmaschine entscheiden soll, ob sie jemals mit einem Ergebnis anhält.
 - a) analysierende Maschine so konstruieren, dass sie genau dann nicht anhält, wenn die untersuchte Maschine anhält
 - b) untersucht diese Maschine sich selbst, so liefert sie das Ergebnis, dass sie genau dann anhält, wenn sie nicht anhält, also einen Widerspruch.
 - c) Halteproblem nicht allgemein lösbar ist,
 - d) es gibt Problemklassen, die nicht berechnet werden können.

Halteproblem

- A ein Algorithmus, D Daten für diesen Algorithmus
 - A sei in Form eines Programms gegeben selbst Zeichenkette
 - ebenso Daten D sind Zeichenkette
- M[A,D] ein Algorithmus, der Halteproblem löst
 - M hält in genau einem von zwei Zuständen,
 für <u>irgendeinen</u> Algorithmus A und <u>irgendwelche</u> Daten D
 - 1. Zustand: A angesetzt auf D hält (kürzer: [A, D] HÄLT)
 - 2. Zustand: A angesetzt auf D hält nicht ([A, D] HÄLT NICHT)
- Transformieren der Maschine in eine andere
 - N[A] hat nur noch einen Eingabewert: N[A] \equiv M[A,A]
 - P[A] hat statt des Haltzustands unendlichen Zyklus: P[A]
 - Was geschieht nun mit P[P]?
- P[P] hält nicht an $\Leftrightarrow P[P]$ hält an: Widerspruch!
 - P[...] kann es nicht geben kann.
 - P[..] kanonisch aus N[...] konstruiert $\Rightarrow N[...]$ kann es nicht geben
 - N[...] kanonisch aus aus M[...,...] konstruiert: \Rightarrow M[...] kann es nicht geben,
 - Es gibt keinen Algorithmus, der das allgemeine Halteproblem löst!

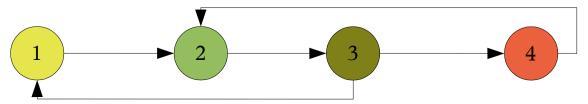
- Halteproblem
 - P[A] = M[A,A], d.h. P[A] hält $\Leftrightarrow A[A]$ hält nicht



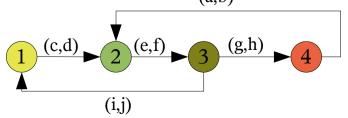
- weitere nicht berechenbare Problemklassen
 - Erreichbarkeitsproblem
 - wird beliebig vorgegebene Stelle beim Ablauf eines Algorithmus jemals erreicht wird
 - Totalitätsproblem
 - hält für alle Eingaben an
 - Äquivalenzproblem
 - gleiche Berechnung zweier beliebiger verschiedene Algorithmen für alle Eingabedaten
 - Probleme nicht allgemein f
 ür alle Algorithmen l
 ösbar
 - für Spezialfälle dieser Problemklassen kann es immer noch eine Lösung geben, die auch effektiv realisiert werden kann.

- Verfeinerung der Berechenbarkeit
 - Halteproblem in zwei Teile zerlegbar
 - ein Algorithmus hält an oder
 - Antwort bleibt unbestimmt
 - z.B. weil der Analysealgorithmus niemals zu einem Ende kommt
 - partiell berechenbar
 - weder Totalitätsproblem noch Äquivalenzproblem partiell berechenbar
 - wie lange dauert es, bis Problem gelöst ist?
 - einige Probleme im Prinzip berechenbar
 - zu große Laufzeit
 - praktisch überhaupt nicht berechenbar
 - Komplexitätstheorie
 - später genauer untersucht

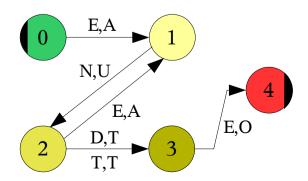
- Mathematische Berechnungsmodelle
 - Der endliche deterministische Automat
 - ein mathematisches Modell für System
 - Merkmale verschiedene Ausprägungen: Zustände (state)
 - meist nur ein Merkmal
 - Wartende in 'Warteschlange'
 - Betriebsphase einer Waschmaschine
 - Werte durch endliche Menge repräsentiert
 - endliche Teilmenge der natürlichen Zahlen
 - keine Einschränkung gegenüber allgemeineren Modellen
 - zwei Attribute à zwei Merkmalen: (1,1), (1,2), (2,1), (2,2) ein Attribut à vier Merkmalen: (1), (2), (3), (4)
 - äquivalent
 - 2. Form einfacher in Zuständen darstellbar



- Mathematische Berechnungsmodelle
 - Der endliche deterministische Automat
 - Automat 'Modell' eines Systems
 - System reagiert (in bestimmtem Zustand) auf externe Ereignisse
 - Reaktion in Form einer "Ausgabe"
 - Reaktion in Form einer Zustandsänderung
 - weitere Eingaben erzeugen weitere Ausgaben/Zustandswechsel
 - Verhalten hängt ab von
 - augenblicklichem Zustand des Systems
 - Eingabe
 - Graphische Notation für Automaten (a,b)



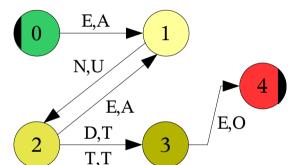
- Mathematische Berechnungsmodelle
 - Automatentypen
 - Besondere Zustände
 - Anfangszustand
 - Endezustand
 - erkennende Automaten
 - Folge eingegebener Zeichen gehört zu vorgegebenen Menge von Zeichenfolgen
 - Übersetzungsautomat
 - ordnet erkanntem Wort anderes Wort zu
 - zu jedem Eingabezeichen wird ein Ausgabezeichen erzeugt



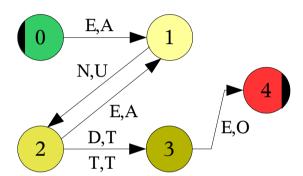
- Mathematische Berechnungsmodelle
 - Anwendungen von Automaten
 - Entwurf von Hardwareschaltungen
 - Ablaufplanung von Programmen
 - Steuerung einer Turingmaschine
 - Formale Spezifikation eines Automaten
 - A = (Zustände, Eingabe, Ausgabe, Übergänge, Anfang, End)

•
$$A = (Z = \{0,1,2,3,4\}, Ein = \{A,...,Z\}, Aus = \{A,...,Z\}, Ü = \{(0,E,A,1), (1,N,U,2), (2,E,A,1), (2,D,T,3), (2,T,T,3), (3,E,O,4)\}, Anf = 0, End = 4).$$

- Mathematische Berechnungsmodelle
 - Eigenschaften von Automaten
 - endlich
 - endlich viele Zustände
 - Eingabealphabet endlic
 - deterministisch
 - in jedem Zustand zu einer Eingabe genau ein Folgezustand festgelegt
 - unvollständig
 - zu Zustand und möglichem Eingabewert kein Nachfolgezustand definiert
 - ggf. führt jeder nicht definierte Übergang in eine speziellen Zustand (Fehler, nicht erkannt)
 - implizit alle Automaten zumindest vollständig

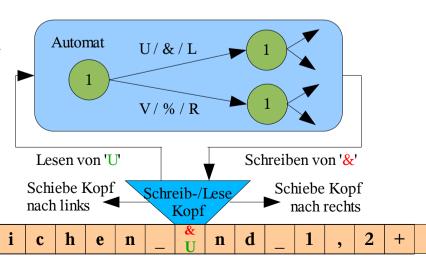


- Mathematische Berechnungsmodelle
 - Eigenschaften von Automaten
 - indeterministisch



- vu Zustand und möglichem Eingabewert mehrere Nachfolgezustände definiert
- umfangreiche Theorie der Automaten
- äquivalent zu minimalem endlichen deterministischen Automaten
- Klasse der erkennbaren Wörter genau spezifizierbar
 - regulären Sprachen

- Mathematische Berechnungsmodelle
 - Turingmaschine (1936, englischer Mathematiker A.M. Turing)
 - elementares Berechnungsmodell
 - Automaten kontrolliert Funktionalität
 - Speicher in Form eines langen Bandes
 - Schreib/Lese-Kopf befindet sich an einer Stelle des Bandes
 - Berechnungsschritt
 - Wert unter Schreib/Lese-Kopf lesen
 - abhängig von Automatenzustand
 - neuen Wert schreiben
 - Schreib/Lese-Kopf nach links oder rechts auf Band bewegen



- Mathematische Berechnungsmodelle
 - Turingmaschine zur Addition zweier Dualzahlen

