
CRC Cyclic Redundancy Check
Analysing and Correcting Errors

Prof. Dr. W. Kowalk
Universität Oldenburg
Fachbereich Informatik

August 2006

© Prof. Dr. W. P. Kowalk,

Oldenburg, 2003
Author's E-Mail-Address
kowalk@informatik.uni-oldenburg.de
The Text has been written with StarOffice 8 and exported to PDF

Contents
1 Introduction.. 3

1.1 About this report... 3
1.2 Overview...3

2 Applications..3
3 Mathematical foundations.. 4

3.1 The operator &..4
3.1.1 Properties of the operator &..5
3.1.2 One polynomial and zero polynomial...5
3.1.3 Complement of a polynomial..5

4 Bitfilter... 6
4.1 Even and uneven bitfilters.. 6
4.2 Properties of even bitfilters...7
4.3 Example.. 7
4.4 Construction of bitfilters...8

5 The CRC method..9
5.1 Types of errors.. 10

5.1.1 Error bursts..10
5.1.2 Two bit errors..10
5.1.3 Uneven number of bit errors... 11
5.1.4 Error correction... 11
5.1.5 Maximum period of bitfilters..12

6 References.. 12
7 Appendix.. 12

7.1 Some optimal Generators..12
7.2 Programme..13

1 Introduction

1.1 About this report

This report analyses a method called cyclic redundancy check (CRC), which is in widespread use
currently. This method can detect and correct errors in sequences of bits and can therefor be used in
data transmission as well as in data storage to protect files from errors.

CRC is in use in many applications and standards, and is easily integrated in hardware. The
method can be described by polynomial division, but since its property seem to be obscure to many
applicants we will give a detailed explanations of its properties and how we can prove them.

Main goal of this paper is to introduce a new and simple theory to characterize the types of
errors that can be detected or corrected by this method.

1.2 Overview

The method presented uses bitfilters to describe important properties of CRC method. A bitfilter
considers only some to the terms of an error polynomial and derives from its structure the properties
of the error. Bitfilters can be analysed independently of an error so that many new and important
properties of CRC method can be derived.

We explain general foundations of the polynomial representation of sequences of bits,
introduces operations on those bit sequences, and introduces then bitfilters in general as well as
special bitfilters, which can be specified for each generator polynomial. Analyses of bitfilters with
even parity to a a generator produces the results of this paper. This encloses exact statements of the
kind of recognized errors, as well as the possibility to correct single bit errors.

This report is a shortened version of longer report, which includes more examples and more
precise proofs.

2 Applications

Data are stored in bytes, which consist of 8 bits each. Thus any set of data can be considered as
sequence of bytes or bits. In computer communication usually the bits are considered to be
independent and a bit sequence is limited by the size of data blocks (or frames, packets, datagrams
etc.). Thus we consider the problem to check whether a finite sequence of bits is changed
unintentionally, e.g. by transmission errors or faulty memories.

To solve this problem (namely to protect data from unintentional errors) we add some
redundant information to the bit sequence (which represents the data). To get those redundancy
information we perform some operations on the bit sequence, the result of which is stored as
redundancy information. The receiver of a message, or the reader of memory input can make the
same operations and compare against the stored redundancy information. If both are the same there

is a good chance no error occurred. If both differ there is definitely an error; however, this may be
in the redundancy information as well as in the data, so in this case there is as well only a good
chance for an error.

Cyclic redundancy check performs a special operation that can be interpreted as polynomial
division. The residual of this division is used as redundancy information and we will explore in this
paper which types of errors can be detected by this method. The dividend is usually called generator
and we will write G(X) or G for this in the rest of this paper.

3 Mathematical foundations

A sequence of bits abcdef..., where a is 0 or 1, b is 0 or 1 etc. is called a bit sequence. We use the
field 0-1 to perform some computation on the bits, i.e. add and multiply those bits; its well known
that the only difference to integer arithmetic is 1+1=0.

Instead of a sequence of bits one can use polynomials, where

A X =∑
i=0

∞

ai⋅X
i where a i , X ∈{0,1}.

We use here the following convention:

abcdef  is mapped to: A X =ab⋅Xc⋅X 2d⋅X 3e⋅X 4 f⋅X 5.

Thus we use a 'high ending' sequence to map between polynomials and bit sequences.

Some polynomial operations like addition ('+') and multiplication ('·') as well as division ('/')
are defined, which we will use as well. Addition and subtraction are the same, because in the field
0-1 we have always

a+b = a–b, e.g. 1+1=1–1=0.

We will use the notions of bit sequences and polynomials interchangeable, i.e. we might say bit k of
a sequence A is one, which is the same as A(X) holds Xk; or we talk about a bit sequence X3+X5+X6,
which means 0001011..., etc.

The number of terms in A(X) (or the number of 1s in A) is called the parity of A(X) or A. We
are usually interested in even or odd parity which means even or odd terms in A(X) or 1s in A.

3.1 The operator &

We introduce a new operator for polynomials, namely '&' (or '∧') with the meaning of multiplication
of each corresponding terms of two polynomials. Formally we can state

A X ∧B  X =∑
i=0

∞

a i⋅X
i & ∑

i=0

∞

bi⋅X i=∑
i=0

∞

ai⋅bi⋅X i .

The meaning of this definition is of course that the resulting term exist if and only if each
corresponding term of the parameter polynomials exist. Logically we can explain this as term by

term conjunction.

Using this operator '&' a polynomial F(X) can be used to select (or filter) some bits of another
polynomial A(X) by setting the corresponding terms of F(X). The resulting polynomial
S(X)=F(X)&A(X) has a term Xk if and only if F(X) has the term Xk, and the corresponding term Xk

exists in A(X), as well. Thus we call such a polynomial F(X) bitfilter, although its a normal
polynomial with nothing else special about it, besides its special application.

3.1.1 Properties of the operator &

When the operator '&' is used in expressions together with other operators it has the following
properties:

a) Operator '&' is commutative and associative.

b) Operator '&' is distributive over '+'.

c) Operator '&' is not distributive over '·'.

d) Neither '+' nor '·' are distributive over '&'.

a) and b) are easily proved, since multiplication is commutative, associative and distributive over
addition. c) and d) can be proved by counter examples.

3.1.2 One polynomial and zero polynomial

Let be 1(X) = 1+X+X2+X3+X4+...+Xk-1+Xk+Xk+1+... (or as a bit sequence 11111111...111...). This is
called the 1-polynomial. We call 0(X) = 0 the 0-polynomial (or as a bit sequence
0000000000..000..). While the one polynomial is very important in our theory, the zero polynomial
will only be used for systematic reasons in some special cases.

3.1.3 Complement of a polynomial

We call Fc(X) = F(X) + 1(X) the complement of F(X). Fc(X) holds exactly those terms that F(X)
does not hold. Obviously we have

1c(X) = 0(X),

Fc(X) + F(X) = 1(X),

Fc(X) & F(X) = 0(X).

As a bit sequence we can write

• (111111...)c = 000000...

• (abcdefg...)c = acbcccdcecfcgc ...

• (abcdefg...)c + abcdefg ... = 111111...

• (abcdefg...)c & abcdefg ... = 000000...

4 Bitfilter

A bitfilter describes a subset of a sequence of bits. This subset can be described by a sequence of
bits, where bit k is set if and only if the bit k of another sequence of bits is to be selected, or
'filtered'. Thus the bitfilter is a sequence of bits, or a polynomial that is used to describe such
sequence of bits, as has been shown above. We write F(X) for a polynomial that is used as a
bitfilter.

The length of a bitfilter is usually unlimited, although we will soon see that there is (in our
special applications) always a cycle in that sequence, so that the sequence of bits repeats again and
again. This cycle's period is usually very long and will be called p. If p is the period of bitfilter
F(X), then Xk is a term of F(X) if and only if Xk+p , Xk+2p , .. are terms of F(X), or Xk=Xk+jp for all
positive integer k≥0 and j>0. Thus it is sufficient to consider only the terms 1, X, X2 ... Xp-1 of F(X).

4.1 Even and uneven bitfilters

The following property sets a relationship between a generator polynomial G(X) and a bitfilter F(X).
A bitfilter F(X) is defined to have even parity (in relation) to G(X), if at all positions of the
generator G(X) in F(X) the number of terms in both polynomials at the same position is even. To
state this formally we only have to write

F(X) & (G(X) · Xk) |X=1 = 0, for all k≥0.

The formula from above means that you replace in F(X) X by 1. If F(X) has an even number of
terms, then F(1) = 0, otherwise F(1) = 1. For example F(X) = X9+X6+X4+X3+1 |X=1 = 1, while
F(X) = X9+X6+X3+1 |X=1 = 0. Remember, that + means addition in the field 0-1, thus 1+1=0!

To give an example with a bit sequence, let be

G = 1100101

then we find for the filter sequence of a filter F with even parity to G:

F = 1000001010110011101111000...
G 1100101 1100101 1100101

Wherever you put the sequence G, you find an even number of 1s in G that correspond to a 1 in F.
We usually say shortly: F(X) is an even bitfilter to G(X).

If F'(X) & (G(X) · Xk) has uneven parity for all k>0, then F'(X) is said to have uneven parity
(in relation) to G(X). It should be clear that this properties restrict the number of bitfilters very
much. There are of course many polynomials that have neither even nor uneven parity to a
generator, but they are of no interest to us in the rest of this paper. Mainly we will consider only
bitfilters with even parity in relation to a generator.

The reason for this definition will become clear quite soon. Since division of A(X) by G(X)
means nothing else but adding a generator G(X) in different positions to a A(X), we only add terms

that preserve the parity of A(X)&F(X). Thus an error with uneven parity in A(X)&F(X) will always
be preserved, since there must be at least one term left. Details of this will be given soon.

4.2 Properties of even bitfilters

An even bitfilter F(X) to a generator G(X) has some interesting properties. Let A(X) be an arbitrary
polynomial, then

F X  & V  X G X ∗X k ∣X=1=F X  & V X ∣X=1 for all k≥0 .

This means that addition of G(X) to a polynomial V(X) at any position does not change the parity of
the filtered bits of F(X)&V(X), provided F(X) is an even bitfilter to G(X). The prove is simple, since

F X  & V  X G  X ∗X k∣X=1=F  X  & V  X F  X  & G  X ∗X k∣X=1=
 = F  X  & V X ∣X=1 for all k≥0,

and the second term in the second expression is zero from definition of even bitfilter.

Since division is performed by addition of the generator at some positions this result says that
parity isn't changed by division for the set of filtered bits. From this we will soon see we can derive
many interesting results.

A very simple even bitfilter to a generator G(X) with even parity is 1(X). From this follows
already that all generators with even terms allow to detect all uneven number of bit errors.

The complement of a bitfilter has similar properties as the bitfilter. From

F c X & G X ⋅X k=1 X F  X &G  X ⋅X k=G X ⋅X kF X & G X ⋅X k

follows that with even parity of G(X) also the complement of an even bitfilter has even parity, while
with uneven parity of G(X) the complement of an even bitfilter has uneven parity (in relation to
G(X), respectively).

4.3 Example

An example might help to understand these properties. Since we have to divide we write the
smallest Bit (i.e. X0) to the right! The generator be 101011 or G(X)=X0+X1+X3+X5. The error be
0000010011100000 or E(X)=X5+X6+X7+X10. A bitfilter with even parity to G(X) is
...011011100001010 or F(X)=X1+X3+X8+X9+X10+X12+X13+... (Construction of bitfilters follows).
Then follows F(X)&E(X)=X10, i.e. there is an odd number of terms in F(X)&E(X), thus there must
be an residual when E(X) is divided by G(X). E.g. F(X)&(E(X)+G(X)·X10)|X=1 ≠0, etc.

F = 0011011100001010
E = 0000010011100000 F&E = 0000010000000000
G1 = 101011 G1&E= 0000000101100000

The reader should check that E(X) divided by G(X) leaves an residual. As an counter example take

the error 1000000000000001 or E(X)=X0+X15. This does not leave a residual when divided by
G(X), as can be checked. The reason is that there is no bitfilter with which you can filter exactly one
of the two bits, since all bitfilters with even parity to G(X) have a cycle with period 15, as will be
shown later.

4.4 Construction of bitfilters

To construct a bitfilter F(X) of even parity to a generator G(X) of degree n one can use an arbitrary
sequence of n bits. Since G(X) is one bit longer not all bits match G(X), so we can uniquely
determine which is the next bit at the left and right side. For example in the sequence below, one
starts with a sequence (here 100000), sets at first G at this position and counts the number of
matching 1s. If they are uneven a 1 is to be appended to F, otherwise a 0 is to be appended. Then
shift G one position from left to right and proceed.

F = 1000001010110011101111000...
G 1100101...

This means that n bits or 2n distinct combinations of bits determine any even bitfilter to G. Since
after some time there must be a repetition of an already produced combination of n bits, there is a
cycle in any even bitfilter to a generator G. Since left and right side are uniquely determined, there
is no bifurcation of such sequences.

The period of a bitfilter is a very important property that will be considered soon as the key to
the main properties of CRC. Although there are 2n distinct bitfilters there should be some with
similar properties. Since there are cycles in these bitfilters we call bitfilters equivalent when the
sequence of bits is the same, although they do not have the same phase.

Let F(X)//Xk be defined as

F  X  // X k=∑
i=0

∞

f ik⋅X i .

then two distinct bitfilters F(X) and F'(X) are equivalent, if and only if there is a k so that
F(X)//Xk=F'(X). If the period of F(X) (and F'(X)) is p, then also F'(X)//Xp-k=F(X) for the same k<p.
Also we have always F(X)//Xp=F(X).

The combination of equivalent and complement bitfilters now shows that there can be only a
very small number of essentially distinct bitfilters. The complement to 1(X) is of course 0(X), both
of which are bitfilters of even parity to a generator G(X) with even parity. Thus there are 2n-2 other
bitfilters. If a bitfilter has an uneven period than either the number of 1s or the number 0s in a
period is uneven. For the complement bitfilter the opposite holds, i.e. the number of 0s or the
number 1s is uneven. In both cases however, there can never be a complement of F(X) that is
equivalent to F(X), since in that case the number of 0s and 1s must be the same.

Let there be a bitfilter F(X) with even parity to G(X) with (uneven) length p=2n-1-1, then Fc(X)
cannot be equivalent to F(X), thus we have two essentially distinct bitfilters with period p, or
together with the trivial bitfilters 1(X) and 0(X) we have 2·p+2= 2n bitfilters; these are therefore all

possible bitfilters.

It is possible to find generators G(X) with more than 4 essentially distinct bitfilters; an
example is G(X)=1+X+X2+X7 with the bitfilters:

0, 1, 111000010100110, 100100011110101, 1001, 01, 010000011000100101111100111011,
and 100000010000111001010111010010011111101111000110101000101101.

It will soon become clear that generators with small bitfilter periods are not really useful. But the
reader may observe that the period of all the bitfilters in the last example divides always 60. It is a
general property of all bitfilters (with even parity in relationship to a generator with even number of
terms) that their period divides the period of the greatest length of any bitfilter. This restricts the
number of bitfilters very much. The proof will be sketched here.

The proof uses the property of a bitfilter sum, i.e. if F(X) and F'(X) are bitfilters with even
parity to a generator G(X) with even parity, then F(X)+F'(X) is also a bitfilter with this property.
Now, using the bitfilter that is generated by 100000.., one can construct further basis bitfilters with
the starting bit sequence x10000..., xx10000..., xxx10000..., etc. and show that all other bitfilters
can be constructed by the sum of some of these n basis bitfilters. Since these basis bitfilters have a
minimum period p, all other have the period p, and if there minimum period is smaller it must be a
divider of p. Also follows that the bitfilter with starting bit sequence 100000... is a bitfilter with the
longest period p.

5 The CRC method

CRC uses the rest of polynomial division as redundancy information for detecting errors. The
following steps are to be performed:

a) Let N(X) be the data polynomial.
b) Let G(X) be a generator of degree n.
c) Let R(X) be the residual after division of N(X)·Xn by G(X). Thus we have

G(X)·Q(X)+R(X)=N(X)·Xn or G(X)·Q(X)=N(X)·Xn+R(X). Thus N(X)·Xn+R(X) can be divided
by G(X).

d) The sender sends S(X)=N(X)·Xn+R(X).
e) The receiver gets H(X)=S(X)+E(X). E(X) is called error polynomial. It has a term Xk if and

only if there is an error (i.e. 0 became 1 or vice versa) at the bit k (k=0,1,2,...).
f) The receiver divides H(X)/G(X)=(S(X)+E(X))/G(X).

H X 
G X 

= S  X E X 
G X 

= S  X 
G X 

 E  X 
G  X 

= N  X ⋅X kR  X 
G X 

 E X 
G  X 

=Q  X  E  X 
G X 

The term Q(X) has no residual, thus any non-zero residual results from a non-zero error E(X).

If any non-zero residual is found it is originated by the error during transmission or storage of the
data N(X). Thus in the following we will only consider the error polynomial E(X).

5.1 Types of errors

We start with a simple definition of length and distance. The distance of two bits or terms Xk and Xj

is defined to be |k–j|. Thus Xk and Xk have the distance 0, or Xk and Xk+1 have the distance 1. The
length of a sequence of bits with terms Xk+...+Xj is defined to be |j-k|+1. Thus the sequence Xk has
the length 1 and the sequence Xk+Xk+1+Xk+2 has the length |k+2–k|+1=3.

5.1.1 Error bursts

Let us consider an arbitrary generator of length n+1: G(X)=1+...+Xn. A burst of length k is defined
to be a sequence of bits with length k. Error bursts occur often in real world systems. If a burst
E(X)=Xr +...+Xr+n+1 of length n+1 is given and the pattern of that burst is the same as the pattern of
the generator, i.e. E(X)=G(X)·Xr, then the residual of E(X)/G(X) is 0, thus the error is not detected.
However, in all other cases a burst of length n+1 leaves a non-zero residual, as will be proved now.

To divide E(X) by G(X) we add repeatedly G(X)·Xq with some appropriate q's. If
E(X)=Xr+...+Xk+...Xj+...+Xr+n has length n+1, then E(X)+G(X)·Xr has length less than n+1, since
Xr+...+ak·Xk+...+aj·Xj+...+Xr+n + (Xr +...+Xr+n) = Xk+...Xj , where k and j are the lowest and highest
indices of terms in E(X), that differ from the corresponding terms in G(X). Obviously, k and j are
neither r nor r+n, so |k–j|+1<n+1. Thus the resulting sequence is a burst of length less than that of
G(X) and it is not zero, since we assumed at least one different bit in E(X) and G(X)·Xr. Now we add
G(X)·Xr to a burst of length less than n+1, so that ar+1·Xr+1 +...+Xk+...+Xj+...+Xr+n + (Xr +...+Xr+n) =
Xr+...+Xj, where again |r–j|+1<n+1, and again this term cannot vanish, since the lowest term Xr will
always be non-zero. We can now proceed in this way and finally come to a burst with highest bit
less then Xn which means it cannot be divided by G(X) anymore.

The result of these simple considerations is of course, that all but one bursts not longer than
G(X) will be discovered by CRC. This does not depend on the structure of G(X), i.e. whether its
parity is odd or even. This encloses single bit errors (as 'burst' of length 1) as well.

We could prove this by use of bitfilters, where however we have to assume even parity to the
generator G(X). Since this is less general than the proof above, we leave it as an exercise to the
reader.

5.1.2 Two bit errors

The main advantage of bitfilters is given by classifying the condition when two bit errors can be
detected. This relies heavily on the period of an even bitfilter.

We assume a generator G(X)=1+...+Xn with degree n and even parity and a period p of the
longest bitfilter with even parity to G(X). Let there be two bit errors E(X)=Xk+Xj, where |k–j| is not a
multiple of p. Then there must be a bitfilter F(X) with even parity to G(X) that filters exactly one of
those two erroneous bits (as an example see section 4.3). If in each (or all) phases F(X) filters both
bits or none of E(X)=Xk+Xj, then F(X) has in a distance |k–j| exactly the same bits, and thus its
period would be |k–j|, which we had excluded. Thus there exists such a bitfilter with uneven parity

to E(X), which means division leaves an uneven residual, i.e. the residual will be non-zero.

This finishes the proof that any two bit errors can be detected by CRC, besides those in a
multiple of the period of the (longest) bitfilter with even parity to the generator. This shows how
important it is to use generators with longest bitfilters, which is in many cases simple to achieve.
E.g. common generators have degree 16, and the maximum bitfilter length of this generators is
p=215-1, which means more than 4000 bytes. In most protocols packets are much shorter (besides
FDDI with maximum packet lengths of 4500 bytes; in IP with packet length of 264 bytes there is no
error check at all). The well known generators G(X)=1+X2+X15+X16 or G(X)=1+X+X14+X16 do this
very well. See appendix 7.1 for more examples.

5.1.3 Uneven number of bit errors

We have already mentioned a very simple proof that any odd number of errors will be discovered
by CRC, provided that the generator's parity is even. Since 1(X) is a bitfilter with even parity to
G(X), all uneven errors have uneven parity to 1(X), which proves the theorem.

5.1.4 Error correction

It is useful to correct errors, provided one knows the exact position of the erroneous bits. To correct
1-bit errors, one can use CRC as well.

Let us assume there is a 1-bit error. To prove that the receiver can correct this error we only
have to prove that the residuals can be distinguished from any other distinct single bit errors. Thus,
let us assume that Xk and Xj leave the same residual R(X), i.e.

Xk = G(X)·Qk(X) + R(X),

Xj = G(X)·Qj(X) + R(X),

Summing these equations we get

Xk+Xj = G(X)·Qk(X) + Rk(X)+G(X)·Qj(X) + R(X) =
 = G(X)·(Qk(X) + Qj(X)) + R(X) + R(X) =
 = G(X)·(Qk(X) + Qj(X)).

This means of course that dividing two bits leaves no residual, which is the case only when their
distance is a multiple of the period of all bitfilters. This shows that single bit errors can be corrected
uniquely, if the length of the data block is no longer than the maximum period of all bitfilters. This
shows again how important it is to use generators with longest possible bitfilters, since this means
that longer blocks can be corrected as well.

It should be stated explicitly that three bit errors can generate the same residual as one bit
error. Two or any even number of bit errors leaves always residuals with even number of terms,
while odd number of bit errors leave always an uneven number of terms as residual (if the parity of
G(X) is even). Thus error correction of single bit errors should be used only when the chance for
three bit errors is very low. Some applications that use error correction by CRC are bluetooth (FEC

1/3) and ATM, where error correction in the header (HEC: header error correction) is performed in
each cell header, while an error in the next header requires new resynchronisation of the cell stream.

5.1.5 Maximum period of bitfilters

Bitfilters have been proved to be useful for checking for errors and correcting errors. However, they
must have even parity to a generator and they should be of maximum length. The maximum length
for a bitfilter with these properties follows from simple considerations.

The number of residuals with a generator of degree n is 2n, since there are 2n combinations of
the terms 1, X, ...,Xn-1. Half of these, i.e. 2n-1, have odd parity, and since the polynomials 1, X, ...,Xp-1

all have distinct odd parity residuals, maximum period p ≤ 2n-1. We have seen that p = 2n-1–1 is
maximum period of bitfilters with even parity to even generators. There is always one residual with
odd number of terms that is not a residual of a single bit error. It can be found by solving the
equation R(X)·X+G(X)=R(X), which can be solved uniquely if G(X) has even parity. Then follows

R(X)·Xk+G(X)·Xk-1=R(X)·Xk-1

R(X)·Xk-1+G(X)·Xk-2=R(X)·Xk-2

..

R(X)·X+G(X)=R(X)

This is the missing residual among those 2n-1 odd parity residuals from above.

6 References

W. Kowalk: "CRC-Analyseverfahren mit Bitfiltern".
“http://einstein.informatik.uni-oldenburg.de/papers/Bitfilter.pdf”

7 Appendix

7.1 Some optimal Generators

Some optimal generators of different degree with 4 terms:

1+X+X2+X4, 1+X+X3+X5, 1+X+X2+X6, 1+X+X5+X7, 1+X+X6+X8, 1+X2+X6+X9, 1+X2+X5+X10,
1+X+X3+X11, 1+X2+X7+X12, 1+X+X2+X7+X12+X13, 1+X+X2+X14, 1+X2+X5+X15, 1+X+X14+X16,
1+X+X11+X17, 1+X+X14+X18, 1+X+X13+X19, 1+X+X14+X20, 1+X+X11+X21, 1+X+X16+X22, 1+X+X21+X23,
1+X+X18+X24, 1+X2+X14+X25, 1+X+X22+X26, 1+X+X15+X27, 1+X2+X15+X28, 1+X+X17+X29,
1+X2+X13+X30, 1+X2+X12+X31, 1+X+X28+X32.

For degree 13 no generator with four terms exists; we added one with six terms.

7.2 Programme
A program to compute maximum period was been implemented in Java™.

/**
* Computes period of the even bitfilter to a generator.
* The generator is a long number, where its degree is the second parameter.
* The generator highest bit is 1L of the generator field, the lowest bit is at position
* 2^(degreeGenerator) in generator field, or as bit pattern: 1L<<(degreeGenerator).
* @param generator Generator of the bitfilter, as specified above.
* @param degreeGenerator Degree of the generator
* @return Returns the period of the longest bitfilter
*/
static long bitfilterPeriod(long generator, long degreeGenerator) {
 long bitMask = 1L<<degreeGenerator; // mask the bit to compare for even parity
 long mask = ~((-1L)<<(degreeGenerator)); // mask the result, to detect the period
 long period = 1; // counts the length of the bitfilter
 long bitfilter = (1L)<<(degreeGenerator-1); // bitfilter's bit pattern
 long startBitfilter = bitfilter; // start bitfilter, to compare with
 long limit = (1L)<<(degreeGenerator); // limit loop, if something is wrong
 for(;period<=limit;) { // cycle for all bits in bitfilter
 long m = bitMask; // copy bit mask to count number of bits in generator and bitfilter
 int cnt = 0; // counter for bit count
 bitfilter<<=1; // shift bitfilter one position
 long v = bitfilter&generator; // count only bits at same position in
 // generator and bitfilter
 while(m!=0) { // for all bits, selected by bit mask
 if((m&v)!=0) cnt++; // if bit in generator and bitfilter is set, count it!
 m>>=1; // next bit mask
 }
 if((cnt&1)==1)bitfilter+=1L; // if count is odd set next bit of bitfilter
 if((mask&bitfilter)==startBitfilter) return period; // if bitfilter is the same
 // as start, cycle found!
 period++; // analyse next bit of bitfilter!
 }
 System.out.println("undefined end; period = "+period);
 return 0;
}

	1 Introduction
	1.1 About this report
	1.2 Overview

	2 Applications
	3 Mathematical foundations
	3.1 The operator &
	3.1.1 Properties of the operator &
	3.1.2 One polynomial and zero polynomial
	3.1.3 Complement of a polynomial

	4 Bitfilter
	4.1 Even and uneven bitfilters
	4.2 Properties of even bitfilters
	4.3 Example
	4.4 Construction of bitfilters

	5 The CRC method
	5.1 Types of errors
	5.1.1 Error bursts
	5.1.2 Two bit errors
	5.1.3 Uneven number of bit errors
	5.1.4 Error correction
	5.1.5 Maximum period of bitfilters

	6 References
	7 Appendix
	7.1 Some optimal Generators
	7.2 Programme

