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1  Introduction

1.1  About this report

This report analyses a method called cyclic redundancy check (CRC), which is in widespread use 
currently. This method can detect and correct errors in sequences of bits and can therefor be used in 
data transmission as well as in data storage to protect files from errors. 

CRC is in use in many applications and standards, and is easily integrated in hardware. The 
method can be described by polynomial division, but since its property seem to be obscure to many 
applicants we will give a detailed explanations of its properties and how we can prove them. 

Main goal of this paper is to introduce a new and simple theory to characterize the types of 
errors that can be detected or corrected by this method.

1.2  Overview

The method presented uses bitfilters to describe important properties of CRC method. A bitfilter 
considers only some to the terms of an error polynomial and derives from its structure the properties 
of the error. Bitfilters can be analysed independently of an error so that many new and important 
properties of CRC method can be derived. 

We  explain  general  foundations  of  the  polynomial  representation  of  sequences  of  bits, 
introduces operations on those bit sequences, and introduces then bitfilters in general as well as 
special bitfilters, which can be specified for each generator polynomial. Analyses of bitfilters with 
even parity to a a generator produces the results of this paper. This encloses exact statements of the 
kind of recognized errors, as well as the possibility to correct single bit errors.

This report is a shortened version of longer report, which includes more examples and more 
precise proofs. 

2  Applications

Data are stored in bytes, which consist of 8 bits each. Thus any set of data can be considered as 
sequence  of  bytes  or  bits.  In  computer  communication  usually  the  bits  are  considered  to  be 
independent and a bit sequence is limited by the size of data blocks (or frames, packets, datagrams 
etc.).  Thus  we  consider  the  problem  to  check  whether  a  finite  sequence  of  bits  is  changed 
unintentionally, e.g. by transmission errors or faulty memories. 

To  solve  this  problem  (namely  to  protect  data  from  unintentional  errors)  we  add  some 
redundant information to the bit sequence (which represents the data). To get those redundancy 
information we perform some operations  on  the  bit  sequence,  the result  of  which is  stored  as 
redundancy information. The receiver of a message, or the reader of memory input can make the 
same operations and compare against the stored redundancy information. If both are the same there 



is a good chance no error occurred. If both differ there is definitely an error; however, this may be 
in the redundancy information as well as in the data, so in this case there is as well only a good 
chance for an error.

Cyclic redundancy check performs a special operation that can be interpreted as polynomial 
division. The residual of this division is used as redundancy information and we will explore in this 
paper which types of errors can be detected by this method. The dividend is usually called generator 
and we will write G(X) or G for this in the rest of this paper.

3  Mathematical foundations

A sequence of bits abcdef..., where a is 0 or 1, b is 0 or 1 etc. is called a bit sequence. We use the 
field 0-1 to perform some computation on the bits, i.e. add and multiply those bits; its well known 
that the only difference to integer arithmetic is 1+1=0. 

Instead of a sequence of bits one can use polynomials, where 

A X =∑
i=0

∞

ai⋅X
i  where a i , X ∈{0,1}.

We use here the following convention: 

abcdef  is mapped to: A X =ab⋅Xc⋅X 2d⋅X 3e⋅X 4 f⋅X 5.

Thus we use a 'high ending' sequence to map between polynomials and bit sequences. 

Some polynomial operations like addition ('+') and multiplication ('·') as well as division ('/') 
are defined, which we will use as well. Addition and subtraction are the same, because in the field 
0-1 we have always

a+b = a–b, e.g. 1+1=1–1=0.

We will use the notions of bit sequences and polynomials interchangeable, i.e. we might say bit k of 
a sequence A is one, which is the same as A(X) holds Xk; or we talk about a bit sequence X3+X5+X6, 
which means 0001011..., etc.  

The number of terms in A(X) (or the number of 1s in A) is called the parity of A(X) or A. We 
are usually interested in even or odd parity which means even or odd terms in A(X) or 1s in A.

3.1  The operator &

We introduce a new operator for polynomials, namely '&' (or '∧') with the meaning of multiplication 
of each corresponding terms of two polynomials. Formally we can state

A X ∧B  X =∑
i=0

∞

a i⋅X
i   &  ∑

i=0

∞

bi⋅X i=∑
i=0

∞

ai⋅bi⋅X i .

The  meaning  of  this  definition  is  of  course  that  the  resulting  term  exist  if  and  only  if  each 
corresponding term of the parameter polynomials exist. Logically we can explain this as term by 



term conjunction. 

Using this operator '&' a polynomial F(X) can be used to select (or filter) some bits of another 
polynomial  A(X)  by  setting  the  corresponding  terms  of  F(X).  The  resulting  polynomial 
S(X)=F(X)&A(X) has a term Xk if and only if F(X) has the term Xk, and the corresponding term Xk 

exists  in A(X),  as  well.  Thus  we  call  such  a  polynomial  F(X)  bitfilter,  although  its  a  normal 
polynomial with nothing else special about it, besides its special application. 

3.1.1  Properties of the operator &

When the operator '&' is used in expressions together with other operators it  has the following 
properties:

a) Operator '&' is commutative and associative.

b) Operator '&' is distributive over '+'.

c) Operator '&' is not distributive over '·'.

d) Neither '+' nor '·' are distributive over '&'.

a) and b) are easily proved, since multiplication is commutative, associative and distributive over 
addition. c) and d) can be proved by counter examples. 

3.1.2  One polynomial and zero polynomial

Let be 1(X) = 1+X+X2+X3+X4+...+Xk-1+Xk+Xk+1+... (or as a bit sequence 11111111...111...). This is 
called  the  1-polynomial.  We  call  0(X)  =  0  the  0-polynomial  (or  as  a  bit  sequence 
0000000000..000..). While the one polynomial is very important in our theory, the zero polynomial 
will only be used for systematic reasons in some special cases.

3.1.3  Complement of a polynomial

We call  Fc(X) =  F(X) + 1(X) the complement of  F(X).  Fc(X) holds exactly those terms that  F(X) 
does not hold. Obviously we have

1c(X) = 0(X),

Fc(X) + F(X) = 1(X),

Fc(X) & F(X) = 0(X).

As a bit sequence we can write

• (111111...)c = 000000...

• (abcdefg...)c = acbcccdcecfcgc ...

• (abcdefg...)c + abcdefg  ... = 111111...

• (abcdefg...)c & abcdefg ... = 000000...



4  Bitfilter

A bitfilter describes a subset of a sequence of bits. This subset can be described by a sequence of 
bits, where bit  k is set if and only if the bit  k of another sequence of bits is to be selected, or 
'filtered'.  Thus the bitfilter  is a  sequence of bits,  or  a polynomial that is used to describe such 
sequence of bits,  as  has been shown above.  We write  F(X)  for a  polynomial  that is  used as a 
bitfilter.

The length of a bitfilter is usually unlimited, although we will soon see that there is (in our 
special applications) always a cycle in that sequence, so that the sequence of bits repeats again and 
again. This cycle's period is usually very long and will be called  p. If  p is the period of bitfilter 
F(X), then Xk is a term of F(X) if and only if  Xk+p ,  Xk+2p , .. are terms of  F(X), or  Xk=Xk+jp for all 
positive integer k≥0 and j>0. Thus it is sufficient to consider only the terms 1, X, X2 ... Xp-1 of F(X).

4.1  Even and uneven bitfilters

The following property sets a relationship between a generator polynomial G(X) and a bitfilter F(X). 
A bitfilter  F(X)  is  defined  to  have  even parity  (in  relation)  to  G(X),  if  at  all  positions  of  the 
generator G(X) in F(X) the number of terms in both polynomials at the same position is even. To 
state this formally we only have to write

F(X) & ( G(X) · Xk ) |X=1 = 0, for all k≥0.

The formula from above means that you replace in  F(X)  X by 1. If  F(X) has an even number of 
terms, then  F(1) = 0, otherwise  F(1) = 1. For example  F(X) = X9+X6+X4+X3+1 |X=1 = 1, while 
F(X) = X9+X6+X3+1 |X=1 = 0. Remember, that + means addition in the field 0-1, thus 1+1=0!

To give an example with a bit sequence, let be

G = 1100101 

then we find for the filter sequence of a filter F with even parity to G:

F = 1000001010110011101111000...
G    1100101  1100101 1100101

Wherever you put the sequence G, you find an even number of 1s in G that correspond to a 1 in F. 
We usually say shortly: F(X) is an even bitfilter to G(X).

If  F'(X) & ( G(X) · Xk ) has uneven parity for all  k>0, then F'(X) is said to have uneven parity 
(in relation) to  G(X). It  should be clear that this properties restrict the number of bitfilters very 
much.  There  are  of  course  many  polynomials  that  have  neither  even  nor  uneven  parity  to  a 
generator, but they are of no interest to us in the rest of this paper. Mainly we will consider only 
bitfilters with even parity in relation to a generator. 

The reason for this definition will become clear quite soon. Since division of  A(X) by G(X) 
means nothing else but adding a generator G(X) in different positions to a A(X), we only add terms 



that preserve the parity of A(X)&F(X). Thus an error with uneven parity in A(X)&F(X) will always 
be preserved, since there must be at least one term left. Details of this will be given soon.

4.2  Properties of even bitfilters

An even bitfilter F(X) to a generator G(X) has some interesting properties. Let A(X) be an arbitrary 
polynomial, then 

F X   & V  X G X ∗X k ∣X=1=F X   & V X ∣X=1  for all k≥0 .

This means that addition of G(X) to a polynomial V(X) at any position does not change the parity of 
the filtered bits of F(X)&V(X), provided F(X) is an even bitfilter to G(X). The prove is simple, since

F X   & V  X G  X ∗X k∣X=1=F  X   & V  X F  X   & G  X ∗X k∣X=1=
  = F  X   & V X ∣X=1  for all k≥0,

and the second term in the second expression is zero from definition of even bitfilter.

Since division is performed by addition of the generator at some positions this result says that 
parity isn't changed by division for the set of filtered bits. From this we will soon see we can derive 
many interesting results. 

A very simple even bitfilter to a generator G(X) with even parity is 1(X). From this follows 
already that all generators with even terms allow to detect all uneven number of bit errors. 

The complement of a bitfilter has similar properties as the bitfilter. From 

F c X & G X ⋅X k=1 X F  X &G  X ⋅X k=G X ⋅X kF X & G X ⋅X k

follows that with even parity of G(X) also the complement of an even bitfilter has even parity, while 
with uneven parity of  G(X) the complement of an even bitfilter has uneven parity (in relation to 
G(X), respectively). 

4.3  Example

An example  might  help  to  understand these  properties.  Since  we  have  to  divide  we write  the 
smallest Bit (i.e.  X0) to the right! The generator be  101011 or  G(X)=X0+X1+X3+X5. The error be 
0000010011100000  or  E(X)=X5+X6+X7+X10.  A  bitfilter  with  even  parity  to  G(X)  is 
...011011100001010 or  F(X)=X1+X3+X8+X9+X10+X12+X13+...  (Construction of  bitfilters  follows). 
Then follows F(X)&E(X)=X10, i.e. there is an odd number of terms in F(X)&E(X), thus there must 
be an residual when E(X) is divided by G(X). E.g.  F(X)&(E(X)+G(X)·X10)|X=1 ≠0, etc.

F   = 0011011100001010
E   = 0000010011100000    F&E = 0000010000000000    
G1 =      101011         G1&E= 0000000101100000

The reader should check that E(X) divided by G(X) leaves an residual. As an counter example take 



the error 1000000000000001 or E(X)=X0+X15. This does not leave a residual when divided by 
G(X), as can be checked. The reason is that there is no bitfilter with which you can filter exactly one 
of the two bits, since all bitfilters with even parity to G(X) have a cycle with period 15, as will be 
shown later.

4.4  Construction of bitfilters

To construct a bitfilter F(X) of even parity to a generator G(X) of degree n one can use an arbitrary 
sequence of  n bits.  Since  G(X)  is  one  bit  longer  not  all  bits  match  G(X),  so  we can uniquely 
determine which is the next bit at the left and right side. For example in the sequence below, one 
starts with a sequence (here  100000), sets at first G at this position and counts the number of 
matching 1s. If they are uneven a 1 is to be appended to F, otherwise a 0 is to be appended. Then 
shift G one position from left to right and proceed.

F = 1000001010110011101111000...
G    1100101...

This means that n bits or 2n distinct combinations of bits determine any even bitfilter to G. Since 
after some time there must be a repetition of an already produced combination of n bits, there is a 
cycle in any even bitfilter to a generator G. Since left and right side are uniquely determined, there 
is no bifurcation of such sequences.

The period of a bitfilter is a very important property that will be considered soon as the key to 
the main properties of CRC. Although there are 2n distinct bitfilters there should be some with 
similar properties. Since there are cycles in these bitfilters we call bitfilters equivalent when the 
sequence of bits is the same, although they do not have the same phase. 

Let F(X)//Xk be defined as

F  X  // X k=∑
i=0

∞

f ik⋅X i .

then  two  distinct  bitfilters  F(X)  and  F'(X)  are  equivalent,  if  and  only  if  there  is  a  k so  that 
F(X)//Xk=F'(X). If the period of F(X) (and F'(X)) is p, then also F'(X)//Xp-k=F(X) for the same k<p. 
Also we have always F(X)//Xp=F(X).

The combination of equivalent and complement bitfilters now shows that there can be only a 
very small number of essentially distinct bitfilters. The complement to 1(X) is of course 0(X), both 
of which are bitfilters of even parity to a generator G(X) with even parity. Thus there are 2n-2 other 
bitfilters. If a bitfilter has an uneven period than either the number of 1s or the number 0s in a 
period is  uneven. For the complement  bitfilter  the opposite holds,  i.e.  the number of 0s or the 
number 1s is uneven. In both cases however, there can never be a complement of  F(X) that is 
equivalent to F(X), since in that case the number of 0s and 1s must be the same. 

Let there be a bitfilter F(X) with even parity to G(X) with (uneven) length p=2n-1-1, then Fc(X) 
cannot  be equivalent  to  F(X),  thus  we have two essentially  distinct  bitfilters  with period  p,  or 
together with the trivial bitfilters 1(X) and 0(X) we have 2·p+2= 2n bitfilters; these are therefore all 



possible bitfilters. 

It  is  possible  to  find  generators  G(X)  with  more  than  4  essentially  distinct  bitfilters;  an 
example is G(X)=1+X+X2+X7 with the bitfilters: 

0, 1,  111000010100110, 100100011110101, 1001, 01, 010000011000100101111100111011, 
and 100000010000111001010111010010011111101111000110101000101101.

It will soon become clear that generators with small bitfilter periods are not really useful. But the 
reader may observe that the period of all the bitfilters in the last example divides always 60. It is a 
general property of all bitfilters (with even parity in relationship to a generator with even number of 
terms) that their period divides the period of the greatest length of any bitfilter. This restricts the 
number of bitfilters very much. The proof will be sketched here. 

The proof uses the property of a bitfilter sum, i.e. if  F(X) and F'(X) are bitfilters with even 
parity to a generator  G(X) with even parity, then F(X)+F'(X) is also a bitfilter with this property. 
Now, using the bitfilter that is generated by 100000.., one can construct further basis bitfilters with 
the starting bit sequence x10000..., xx10000..., xxx10000..., etc. and show that all other bitfilters 
can be constructed by the sum of some of these n basis bitfilters. Since these basis bitfilters have a 
minimum period p, all other have the period p, and if there minimum period is smaller it must be a 
divider of p. Also follows that the bitfilter with starting bit sequence 100000... is a bitfilter with the 
longest period p.

5  The CRC method

CRC uses  the  rest  of  polynomial  division as  redundancy information  for  detecting errors.  The 
following steps are to be performed:

a) Let N(X) be the data polynomial.
b) Let G(X) be a generator of degree n.
c) Let R(X) be the residual after division of N(X)·Xn by G(X). Thus we have 

G(X)·Q(X)+R(X)=N(X)·Xn or G(X)·Q(X)=N(X)·Xn+R(X). Thus N(X)·Xn+R(X) can be divided 
by G(X).

d) The sender sends S(X)=N(X)·Xn+R(X). 
e) The receiver gets H(X)=S(X)+E(X). E(X) is called error polynomial. It has a term Xk if and 

only if there is an error (i.e. 0 became 1 or vice versa) at the bit k (k=0,1,2,...).
f) The receiver divides H(X)/G(X)=(S(X)+E(X))/G(X).

H X 
G X 

= S  X E X 
G X 

= S  X 
G X 

 E  X 
G  X 

= N  X ⋅X kR  X 
G X 

 E X 
G  X 

=Q  X  E  X 
G X 

The term Q(X) has no residual, thus any non-zero residual results from a non-zero error E(X).

If any non-zero residual is found it is originated by the error during transmission or storage of the 
data N(X). Thus in the following we will only consider the error polynomial E(X).



5.1  Types of errors

We start with a simple definition of length and distance. The distance of two bits or terms Xk and Xj 

is defined to be |k–j|. Thus Xk and Xk have the distance 0, or Xk and Xk+1 have the distance 1. The 
length of a sequence of bits with terms Xk+...+Xj is defined to be |j-k|+1. Thus the sequence Xk has 
the length 1 and the sequence Xk+Xk+1+Xk+2 has the length |k+2–k|+1=3.

5.1.1  Error bursts

Let us consider an arbitrary generator of length n+1: G(X)=1+...+Xn. A burst of length k is defined 
to be a sequence of bits with length  k. Error bursts occur often in real world systems. If a burst 
E(X)=Xr  +...+Xr+n+1 of length n+1 is given and the pattern of that burst is the same as the pattern of 
the generator, i.e. E(X)=G(X)·Xr, then the residual of E(X)/G(X) is 0, thus the error is not detected. 
However, in all other cases a burst of length n+1 leaves a non-zero residual, as will be proved now.

To  divide  E(X)  by  G(X)  we  add  repeatedly  G(X)·Xq with  some  appropriate  q's.  If 
E(X)=Xr+...+Xk+...Xj+...+Xr+n has length  n+1, then  E(X)+G(X)·Xr has length less  than  n+1, since 
Xr+...+ak·Xk+...+aj·Xj+...+Xr+n + (Xr  +...+Xr+n) =  Xk+...Xj  , where  k and  j are the lowest and highest 
indices of terms in E(X), that differ from the corresponding terms in G(X). Obviously, k and j are 
neither r nor r+n, so |k–j|+1<n+1. Thus the resulting sequence is a burst of length less than that of 
G(X) and it is not zero, since we assumed at least one different bit in E(X) and G(X)·Xr. Now we add 
G(X)·Xr to a burst of length less than n+1, so that  ar+1·Xr+1 +...+Xk+...+Xj+...+Xr+n + (Xr  +...+Xr+n) = 
Xr+...+Xj, where again |r–j|+1<n+1, and again this term cannot vanish, since the lowest term Xr will 
always be non-zero. We can now proceed in this way and finally come to a burst with highest bit 
less then Xn which means it cannot be divided by G(X) anymore. 

The result of these simple considerations is of course, that all but one bursts not longer than 
G(X) will be discovered by CRC. This does not depend on the structure of  G(X), i.e. whether its 
parity is odd or even. This encloses single bit errors (as 'burst' of length 1) as well. 

We could prove this by use of bitfilters, where however we have to assume even parity to the 
generator  G(X). Since this is less general than the proof above, we leave it as an exercise to the 
reader.

5.1.2  Two bit errors

The main advantage of bitfilters is given by classifying the condition when two bit errors can be 
detected. This relies heavily on the period of an even bitfilter.

We assume a generator  G(X)=1+...+Xn with degree  n and even parity and a period  p of the 
longest bitfilter with even parity to G(X). Let there be two bit errors E(X)=Xk+Xj, where |k–j| is not a 
multiple of p. Then there must be a bitfilter F(X) with even parity to G(X) that filters exactly one of 
those two erroneous bits (as an example see section 4.3). If in each (or all) phases F(X) filters both 
bits or none of  E(X)=Xk+Xj, then  F(X) has in a distance |k–j|  exactly the same bits, and thus its 
period would be |k–j|, which we had excluded. Thus there exists such a bitfilter with uneven parity 



to E(X), which means division leaves an uneven residual, i.e. the residual will be non-zero.

This finishes the proof that any two bit errors can be detected by CRC, besides those in a 
multiple of the period of the (longest) bitfilter with even parity to the generator. This shows how 
important it is to use generators with longest bitfilters, which is in many cases simple to achieve. 
E.g. common generators have degree 16, and the maximum bitfilter length of this generators is 
p=215-1, which means more than 4000 bytes. In most protocols packets are much shorter (besides 
FDDI with maximum packet lengths of 4500 bytes; in IP with packet length of 264 bytes there is no 
error check at all). The well known generators  G(X)=1+X2+X15+X16 or  G(X)=1+X+X14+X16 do this 
very well. See appendix 7.1 for more examples.

5.1.3  Uneven number of bit errors

We have already mentioned a very simple proof that any odd number of errors will be discovered 
by CRC, provided that the generator's parity is even. Since 1(X) is a bitfilter with even parity to 
G(X), all uneven errors have uneven parity to 1(X), which proves the theorem.

5.1.4  Error correction

It is useful to correct errors, provided one knows the exact position of the erroneous bits. To correct 
1-bit errors, one can use CRC as well. 

Let us assume there is a 1-bit error. To prove that the receiver can correct this error we only 
have to prove that the residuals can be distinguished from any other distinct single bit errors. Thus, 
let us assume that Xk and Xj leave the same residual R(X), i.e.

Xk = G(X)·Qk(X) + R(X),

Xj = G(X)·Qj(X) + R(X),

Summing these equations we get

Xk+Xj = G(X)·Qk(X) + Rk(X)+G(X)·Qj(X) + R(X) =
                   = G(X)·(Qk(X) + Qj(X)) + R(X) + R(X) =
                   = G(X)·(Qk(X) + Qj(X)).

This means of course that dividing two bits leaves no residual, which is the case only when their 
distance is a multiple of the period of all bitfilters. This shows that single bit errors can be corrected 
uniquely, if the length of the data block is no longer than the maximum period of all bitfilters. This 
shows again how important it is to use generators with longest possible bitfilters, since this means 
that longer blocks can be corrected as well.

It should be stated explicitly that three bit errors can generate the same residual as one bit 
error. Two or any even number of bit errors leaves always residuals with even number of terms, 
while odd number of bit errors leave always an uneven number of terms as residual (if the parity of 
G(X) is even). Thus error correction of single bit errors should be used only when the chance for 
three bit errors is very low. Some applications that use error correction by CRC are bluetooth (FEC 



1/3) and ATM, where error correction in the header (HEC: header error correction) is performed in 
each cell header, while an error in the next header requires new resynchronisation of the cell stream.

5.1.5  Maximum period of bitfilters

Bitfilters have been proved to be useful for checking for errors and correcting errors. However, they 
must have even parity to a generator and they should be of maximum length. The maximum length 
for a bitfilter with these properties follows from simple considerations. 

The number of residuals with a generator of degree n is 2n, since there are 2n combinations of 
the terms 1, X, ...,Xn-1. Half of these, i.e. 2n-1, have odd parity, and since the polynomials 1, X, ...,Xp-1 

all have distinct odd parity residuals, maximum period  p ≤ 2n-1. We have seen that  p = 2n-1–1 is 
maximum period of bitfilters with even parity to even generators. There is always one residual with 
odd number of terms that is not a residual of a single bit error. It can be found by solving the 
equation R(X)·X+G(X)=R(X), which can be solved uniquely if G(X) has even parity. Then follows

R(X)·Xk+G(X)·Xk-1=R(X)·Xk-1

R(X)·Xk-1+G(X)·Xk-2=R(X)·Xk-2

..

R(X)·X+G(X)=R(X)

This is the missing residual among those 2n-1 odd parity residuals from above.
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7  Appendix

7.1  Some optimal Generators

Some optimal generators of different degree with 4 terms:

1+X+X2+X4,  1+X+X3+X5,  1+X+X2+X6,  1+X+X5+X7,  1+X+X6+X8,  1+X2+X6+X9,  1+X2+X5+X10, 
1+X+X3+X11,  1+X2+X7+X12,  1+X+X2+X7+X12+X13,  1+X+X2+X14,  1+X2+X5+X15,  1+X+X14+X16, 
1+X+X11+X17, 1+X+X14+X18, 1+X+X13+X19, 1+X+X14+X20, 1+X+X11+X21, 1+X+X16+X22, 1+X+X21+X23, 
1+X+X18+X24,  1+X2+X14+X25,  1+X+X22+X26,  1+X+X15+X27,  1+X2+X15+X28,  1+X+X17+X29, 
1+X2+X13+X30, 1+X2+X12+X31, 1+X+X28+X32.

For degree 13 no generator with four terms exists; we added one with six terms.



7.2  Programme
A program to compute maximum period was been implemented in Java™.

/**
* Computes period of the even bitfilter to a generator.
* The generator is a long number, where its degree is the second parameter.
* The generator highest bit is 1L of the generator field, the lowest bit is at position
* 2^(degreeGenerator) in generator field, or as bit pattern: 1L<<(degreeGenerator).
* @param generator Generator of the bitfilter, as specified above.
* @param degreeGenerator Degree of the generator
* @return Returns the period of the longest bitfilter
*/
static long bitfilterPeriod(long generator, long degreeGenerator) {
  long bitMask = 1L<<degreeGenerator;      // mask the bit to compare for even parity
  long mask = ~((-1L)<<(degreeGenerator)); // mask the result, to detect the period
  long period = 1;                         // counts the length of the bitfilter
  long bitfilter = (1L)<<(degreeGenerator-1); // bitfilter's bit pattern
  long startBitfilter = bitfilter;         // start bitfilter, to compare with
  long limit = (1L)<<(degreeGenerator);    // limit loop, if something is wrong
  for(;period<=limit;) { // cycle for all bits in bitfilter
    long m = bitMask; // copy bit mask to count number of bits in generator and bitfilter
    int cnt = 0;      // counter for bit count
    bitfilter<<=1;  // shift bitfilter one position
    long v = bitfilter&generator; // count only bits at same position in
                                  // generator and bitfilter
    while(m!=0) {         // for all bits, selected by bit mask
      if((m&v)!=0) cnt++; // if bit in generator and bitfilter is set, count it!
      m>>=1;              // next bit mask
    }
    if((cnt&1)==1)bitfilter+=1L; // if count is odd set next bit of bitfilter
    if((mask&bitfilter)==startBitfilter) return period; // if bitfilter is the same
                                                        // as start, cycle found!
    period++;             // analyse next bit of bitfilter!
  }
  System.out.println("undefined end; period = "+period);
  return 0;
}
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