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Polynomials

A polynomial represents a sequence of bits, where bit  n with value bn ∈ {0,1}is represented by a 
term bn·Xn. The polynomial from the sum of all those terms represents the sequence of bits uniquely.

Example:
111 is represented by P(X) = X0+X1+X2 = 1+X+X2. 
0000 is represented by P(X) = 0.
101011101101 is represented by P(X) = X0+X2+X4+X5+X6+X8+X9+X11.

We set in these examples the first (or left) term of the bit sequence as bit 0, the last one represents 
the highest degree of the polynomial (high ending), in the example the degree is 11 (which means 
12 terms, where those with coefficient 0 are not written). The length of a bit sequence with trailing 
0s cannot be represented uniquely by the polynomial. 

In other examples, where it is more convenient for us, the last one is defined a bit 0 (low ending). 
We will always state explicitly the corresponding setting.

Tabulators

The tabulators of the program grant access to different functionality.

Logical operations

With bit sequences or polynomials some mathematical operations are useful. Interpreting 0 as false 
and 1 as true, bit sequences can be logically manipulated, where logical and (∧), logical or (∨), and 
logical xor (excluvise or ⊕) are useful. The logic is bit by bit or term by term:

Examples

11111 ∧ 10101 = 10101,

11001 ∧ 10101 = 10001,

00010 ∧ 10101 = 00000;
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11111 ∨ 10101 = 11111,

11001 ∨ 10101 = 11101,

00010 ∨ 10101 = 10111;

11111 ⊕ 10101 = 01010,

11001 ⊕ 10101 = 01000,

00010 ⊕ 10101 = 10111.

Logical operations of polynomials and division can be found in tabulator: Logical operations.

Arithmetical operations

Logical xor can also be interpreted as addition modulo 2. In this case a polynomial P(X) is called a 
polynomial in  X over the field {0,1}. Thus polynoms can be added, subtracted, multiplied, and 
divided. While the first three operations can be performed arbitrarily and result always in another 
polynomial, division is in general possible only with remainder. 

Addition  and  subtraction  yield  the  same  result,  since  1+1=1-1=0  in  the  field  {0,1}. 
Multiplication is performed by multiplying two polynomials in the usual way, e.g.

(X0+X2+X5) · (X2+X4) = X2+X4+X7 + X4+X6+X9 =  X2+X  4  +  X  4  +X6+X7+X9 = X2+X6+X7+X9.

Division is performed by finding to P(X) and D(X) a Q(X) and an R(X) with degree less than D(X) 
so that 

P(X) = D(X) · Q(X) + R(X),

where P(X) is called dividend, D(X) is called divisor (also called generator), Q(X) is called quotient, 
and R(X) is called remainder. In context of error detection and correction, the divisor is often called 
generator.

A  prime P(X) is  a  polynomial  that  can be divided with remainder  0  only by itself  and the 
polynomial A(X) = 1, which divides any polynomial. A prime factor P(X) of a polynomial S(X) is a 
prime that divides S(X) with no remainder. 

Multiplication  of  polynomials  and  estimation  of  prime  factors  can  be  found  in  tabulator: 
Arithmetical operations.

Tabulator 1's complement

This tabulator demonstrates addition in One's Complement, as used by error detection in TCP and 
IP. A number in Two's Complement represents (in n bits) a negative number a by 2n–|a|. A number 
in One's Complement represents (in n bits) a negative number a by 2n–1–|a|. In One's Complement 
there are two zeros, namely 0=0000b, and -0=1111b. -1 is represented by -1=1110b. 

This type of error detection is relatively unsafe, e.g. not all two bit errors can be detected and not 
all odd errors.

Examples: 
0010+0000=0010, but  0000+0010=0010.



0010+0000=0010, but  0001+0001=0010.

Tabulator Bitfilter

A bitfilter is defined in the corresponding script. This tabulator generates one or all bitfilters to a 
generator.

Tabulator Hamming

Hamming  coding  can  be  used  for  error  correction.  The  tabulator  generates  a  new  sequence 
(depending on length and random seed), the Hamming bits, that control this sequence, and when a 
bit is altered it determines the position where that changed bit is found.

Hamming coding is called perfect, since all coded values result in a valid bit sequence. Thus 
perfect codes have no redundancy and cannot distinguish between e.g. 1 and 2 bit errors. See also 
CRC-Correction.

Tabulator CRC Division

This tabulator demonstrates the method of CRC-Division by shifting in corresponding registers. 
Bits are ordered low ending, i.e. the first bit is that of the highest order. The steps to be performed 
by the user are:

1. Set generator by selecting generator's terms (0, .. 15), the term X16 is always 1.
2. Set registers to 0.
3. Append 0's before dividing. 
4. Divide by generator (use Step or Run).
5. Remove 0's.
6. Append the remainder (i.e. content of registers) computed from division.
7. Transfer output to input field.
8. Set Registers to 0. 
9. Divide by generator (use Step or Run).
10. Remainder (i.e. content of registers) should now be 0(x)=0000000...
11. The button 'Make all' generates transfer code (step 2 to 6) in one step.

The remainder can be stored in the field.

Tabulator CRC Correction

This tabulator computes the position of an erroneous bit. The bit sequence is low ending, i.e. the 
leftmost bit is bit 0 (or X0=1). The steps to be performed are the following:

1. Generate a random bit sequence (depending on random and length).
2. Make remainder (appends it automatically to the bit sequence, i.e. at the left side).



3. Divide shows remainder is 0.
4. You can alter a bit at an arbitrary position (set position and click 'Alter at').
5. Compute remainder.
6. Clicking 'Find Error' computes the position of the error from the remainder.
7. Clicking 'Find all  Errors'  sets  errors  at  all  positions and computes from the resulting 
remainder this position (i.e. step 4 to 6 for position 0,1,...,length). Also no error and two 
errors are tested.

CRC-Correction can distinguish between one and two bit errors, since all even number of bit errors 
leave a remainder with even number of terms. Thus this redundancy can be used to avoid error 
correction in case of two bit errors. However, three or any other odd number of bit errors cannot be 
distinguished (in general) by a single bit error and may result in wrong error 'correction'.
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