How to generate a Huffman Tree

Abstract

A tree for optimal coding is sometimes called a Huffman tree. We define this tree here and give an efficient method to create (and store) such a tree.

Definition of Huffman Tree

A binary tree consists of nodes, where each node specifies no or two successors. A node is called inner node (or usually only node), if it has successors. A node with no successors is called a leave. A tree is defined recursively by:

1. A binary tree has a unique node, called a root. A root can be an inner node or a leave.

2. If a binary tree is given and a leave is replaced by a node with two leaves, where the two leaves are no members of the binary tree, then we get another binary tree.

The second condition states, that the connection between a node and its successors can never lead to a node of the binary tree.

Let us have a sequence of N symbols, where the i-th symbol has a frequency y(i). This number will be called the weight of symbol i. If a binary tree is given and each leave has a weight, than the weight of a node is defined as the sum of the weights of its successors, i.e. of two leaves, a leave and an inner node, or two inner nodes.

Let S be a set of N symbols. A Huffman tree is constructed in the following way:

Let W be the set of all weights of the symbols S, i.e. W={y(i) | i(S}. The smallest two weights are leaves of an inner node. The weight of this node is the sum of those two weights. Now those two smallest weights are removed from W, while the sum of them is added to W. Again the smallest two elements are searched for. A new inner node holds them as successors, where they might now be leaves or inner nodes as well.

Construction of a Huffman Tree

To construct this tree in an efficient way we use the following data structures:

struct leaveType {int Name; int Weight; int isNode;}

struct nodeType {int Name; int Weight; int left, right;}

struct leaveType Leaves[N];

struct nodeType Nodes[N];

createLeaves(int number) // Initialises each entry in Leaves[number]

{ int index;

 for(index=0; index<number; index++)

 { Leaves[index].Name = ..;

 Leaves[index].Weight = ..;

 Leaves[index].left = -1;

 Leaves[index].Name = -1;

 } // end for(index…)

}

makeHeap(int number) // Makes a heap from the field of Leaves[number]

{ int index;

 for(index=number/2;index>=0; index--) sift(index, number-1);

}

CreateNodes(int number) // Makes a heap from the field of Leaves[number]

{ int index;

 for(index=0;index<number-3; index--) // for all but the last three elements
 { if(Leaves[1].Weight < Leaves[2].Weight) // Sum up Leaves[0] and Leaves[1]

 { if(Leaves[0].isNode>=0) // points to the node it stands for

 Nodes[index].left = Leaves[0].isNode;

 else

 Nodes[index].left = number + Leaves[0].Name;

 if(Leaves[1].isNode>=0) // points to the node it stands for

 Nodes[index].left = Leaves[1].isNode;

 else

 Nodes[index].left = number + Leaves[1].Name;

 Leaves[1].isNode = index;

 Leaves[1].Weight += Leaves[0].Weight;

 sift(1,number-index-1);

 } else // Sum up Leaves[0] and Leaves[2]

 { ;

 }

 Leaves[0] = Leaves[number-index-1];
 sift(0,number-index-2);

 } // end for(index..

 if(Leaves[1].Weight < Leaves[2].Weight) // Sum up Leaves[0] and Leaves[1]

 { if(Leaves[0].isNode>=0) // points to the node it stands for

 Nodes[index].left = Leaves[0].isNode;

 else

 Nodes[index].left = number + Leaves[0].Name;

 if(Leaves[1].isNode>=0) // points to the node it stands for

 Nodes[index].left = Leaves[1].isNode;

 else

 Nodes[index].left = number + Leaves[1].Name;

 Leaves[1].isNode = index;

 Leaves[1].Weight += Leaves[0].Weight;

 } else {;}

 index++; // == number-2

 if(Leaves[1].isNode>=0) // points to the node it stands for

 Nodes[index].left = Leaves[1].isNode;

 else

 Nodes[index].left = number + Leaves[1].Name;

 if(Leaves[2].isNode>=0) // points to the node it stands for

 Nodes[index].left = Leaves[2].isNode;

 else

 Nodes[index].left = number + Leaves[2].Name;

}

main()

{

 createLeaves(N);

 makeHeap(N);

 CreateNodes();

}

This algorithm first makes a heap from the nodes. Thus the smallest weight stands at index 0, while the next smallest weight stands either at index 1 or index 2. A node is created in Nodes at index, which points to those two smallest elements. If they are nodes, then the variables left and right of this node are assigned the index of this node in the filed Nodes. Otherwise, if they are Leaves, then the variables left and right of this node are assigned the Name of that leave plus the number of elements. Thus it can be distinguished from an index. The Element at index 1 or 2 becomes a node with the new weight as the sum of the two smallest ones. Since this is now a node, we assign to its variable isNode the index of this node, its weight becomes the sum of the weights of the two smallest elements. If there are only three elements left, the situation is to be treated differently, although similar.

When the algorithm ends, each nodes left and right variable point either to another node or they hold a value >= number, which means it points to a leave with that number.

Efficiency

We show that this algorithm is efficient. If N is the number of symbols, then the time to make a heap from N Symbols is O(N). Each of N-3 elements is treated by sifting them into the heap, the complexity of each is O(log2 N). Thus the total complexity is O(N+N*log2 N), which is more efficient than scanning through all N-1 nodes and N leaves N times. Thus this algorithm can also be used to construct very large Huffman trees with many symbols.

