Coding of Texts with Equal Symbol Sequences

Abstract

In this node we analyze some methods to compress texts with long sequences of identical symbols. This situation occurs in some compression techniques, where the first step is to transform a text into another text of corresponding properties.

Introduction

Counter techniques

A first set of techniques might be to store the number of identical symbols in a subsequence and the length of that subsequence. We call these counter techniques.

Storing number of symbols and symbol

To store the symbols, we might estimate the number of identical symbols and store the pairs <count, symbol>. If there is only one symbol, then the counter has the value 1. This method might at most double the number of symbols, if the lengths of the counters are the same as that of the symbols, e.g. 8 Bits for usual ASCII symbols. Of course, this happens only, when all the symbols are different, i.e. the lengths of the subsequences are 1. If there are many longer subsequences, where on the average their lengths are longer than two, then this methods gains some profit. 

There are some practical considerations, the first one of which is the counter value. Since there is no sequence of length zero one might use the zero value to indicate another number, e.g. the greatest number like 256 if we use bytes. If the sequence is longer than the maximum counter value one might use two or more pairs with the same symbol. 

This method has been proven to be not very efficient in compression technique, since there are many symbols which are not identical. Thus in many applications this method generates texts which usual are longer than the original text.

Storing number of identical and different symbols

The next idea is to indicate by a bit or so whether the following sequence consists of some identical symbols or of several different symbols, <ind,count,symbol{,symbol}>. If we have byte values, one might use the first bit of the counter to indicate, whether the sequence consists of 1-128 (counter values 0-127) equal symbols or 1 to 128 different symbols (counter values 128-255). The single value is appended to this byte, as well as the sequence of different values. If the symbols are all different, than each 128th symbol is a counter, which produces a maximum overhead of one for 128 symbols. If there are subsequences of identical symbols, the gain is (n-2) for n equal symbols in the sequence, i.e. zero for sequences of two symbols and more than that for all longer sequences. On the average if after 128 different symbols a sequence of three or more identical symbols follows we have a gain.

This method is in the case where we assume identical subsequences on the average better than the previous one. Its worst case is not that bad, however, if we assume sequences of for example 20 identical symbols after 20 different symbols we get an overhead of 1 for 20 and a gain of 18 for 20, so on the average we pay 21 for 40. In the previous method we had to pay 20 and gain 18, which yields an overhead of 2.

Some practical considerations are to handle two or three identical symbols. E.g. the sequence 

ABCZZEFG

can be coded as

<1,3,A,B,C> <0,2,Z> <1,3,A,B,C>

with 10 bytes altogether or

<1,8,A,B,C,Z,Z,A,B,C>.

with 9 bytes. Similarly the sequence ABCZZZEFG can be coded in one pair or in three pairs all together with 10 bytes each. While in the first case the coding with one pair is even shorter, in the second case there is no different. Of course, if the sequence becomes too long (longer than 128) we have to split anyway, so there is sometimes no choice. But if it’s feasible, a longer sequence is better than several shorter sequences, even if short subsequences with identical symbols exist. 

Transformation techniques

Another set of methods uses a transformation of the symbols of the text into that text, where subsequences of identical symbols are mapped into special symbols, usually zero. The idea is to code this transformed symbol sequence with special encoding, like Huffman, which provides the compression. Transformation techniques usually do not alter the length of the text directly.

Bijective Mapping 

If the symbols used are not as many as the space of the symbol code, e.g. less than 256 symbols if bytes are used, then it might be useful to transform this sequence into another sequence of less bits. As an example, common ASCCI texts use never more than about 80 different symbols; those might be easily coded by seven bits, which yields already a compression gain of one byte for eight symbols. Using Huffman Coding, one might even in case of almost equally distributed frequency of the symbols have more than this gain. This method is also useful for other transformations, like the difference transformation, where new symbols are generated which can be more different ones than in the original text, which is counterproductive for Huffman coding.
Difference Transformation

Since we consider particularly sequences of identical symbols, we might use the differences of two symbols. If the n-th symbol is s[n] (where we count n by 0 until N-1), then we define the transformation by

z[0]=s[0],

z[n]=s[n]-s[n-1] for n=1,…, N-1.

If there is as sequence like 

A,C, B,D,E,E,E,E,E,F,H,H,H,H,I,K,L, 

we get the difference transformation as 

A,2,-1,2,1,0,0,0,0,1,2,0,0,0,1,2,1.

Thus sequences of identical symbols are transformed into sequences of zeros, the length of which is one symbol less. Negative differences are of course computed by modulo calculation. Besides the first symbols, only differences are stored.

Encoding is straight forward. Decoding is by the formulae:

s[0]=z[0],

s[n]=z[n]+s[n-1] for n=1,…, N-1.

There is no overhead, however, also no gain, since both sequences have the same length. Since only differences are stored, the number of different symbols in the encoded sequence might be greater than that in the unencoded one. This can be avoided by a bijective mapping (which however, needs a map, which results in additional overhead).

Run Length Transformation

The idea of the Run Lenght Encoding (RLE) transformation is to use a list of the symbols used and store the index of the entry of the symbol into that list. This does not yet yield any gain. However, this list is changed continuously, by shifting the last found element to the first index. This makes sequences of identical symbols to be mapped into the index 0, after the first element has been shifted there.

List: A,B,C,D,E,F,G,H,I,J,K,L.

A is stored as index 1. The new list looks like

List: A,B,C,D,E,F,G,H,I,J,K,L.

C is stored as index 2. The new list looks like

List: C,A,B,D,E,F,G,H,I,J,K,L.

B is stored as index 2. The new list looks like

List: B,C,A,D,E,F,G,H,I,J,K,L.

D is stored as index 3. The new list looks like

List: D,B,C,A,E,F,G,H,I,J,K,L.

E is stored as index 4. The new list looks like

List: E,D,B,C,A,F,G,H,I,J,K,L.

E is stored as index 0. The new list looks like

List: E,D,B,C,A,F,G,H,I,J,K,L.

E is stored as index 0. The new list looks like

List: E,D,B,C,A,F,G,H,I,J,K,L.

E is stored as index 0. The new list looks like

List: E,D,B,C,A,F,G,H,I,J,K,L.

E is stored as index 0. The new list looks like

List: E,D,B,C,A,F,G,H,I,J,K,L.

F is stored as index 5. The new list looks like

List: F,E,D,B,C,A,G,H,I,J,K,L.

H is stored as index 7. The new list looks like

List: H,F,E,D,B,C,A,G,I,J,K,L.

H is stored as index 0. The new list looks like

List: H,F,E,D,B,C,A,G,I,J,K,L.

H is stored as index 0. The new list looks like

List: H,F,E,D,B,C,A,G,I,J,K,L.

H is stored as index 0. The new list looks like

List: H,F,E,D,B,C,A,G,I,J,K,L.

I is stored as index 8. The new list looks like

List: I,H,F,E,D,B,C,A,G,J,K,L.

K is stored as index 10. The new list looks like

List: K,I,H,F,E,D,B,C,A,G,J,L.

L is stored as index 11. The new list looks like

List: L,K,I,H,F,E,D,B,C,A,G,J.

The resulting sequence of indices is 

1,2, 2,3,4,0,0,0,0,5,7,0,0,0,8,10,11

which can be compared with the difference transformation result:

A,2,-1,2,1,0,0,0,0,1,2,0,0,0,1,2,1.

We find identical sequences of zeros. In situations where some symbols are used more frequently they might be clustered at the beginning of index list, so that heavily used symbols are oftener indexed with small numbers. This might improve the distribution of symbols for Huffman coding, which results therefore in better performance with LRE than with Difference encoding. 

